Skip to main content
Log in

Polydimethylsiloxane multimode optical channel waveguides doped with yellow dye fabricated by microdispensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper reports on the properties of polydimethylsiloxane bulk samples and optical multimode channel waveguides doped with yellow dye fabricated by the microdispensing method. The spectral characteristics of the doped polymer bulk samples showed that the transmission of the edge of the spectra shifted towards longer wavelengths and significantly increased the absorption. The refractive index measured by dark mode spectroscopy did not confirm any change in the refractive index depending on the amount of the dye. The optical losses of the channel waveguides were measured by the cut-back method. The measurement showed that the waveguides with the dye-doped core containing 0.01 wt% of the dye had the lowest losses at 850 and 1300 nm, where the average losses were −1.18 dB (at 850 nm) and − 1.06 dB (at 1300 nm). In comparison with undoped samples, dye-doping caused an increase in optical losses by 0.5–1.0 dB/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author V. Prajzler. The data are not publicly available due to restrictions, e.g., their containing information that could compromise the privacy of research participants.

References

  1. L. Eldada, L.W. Shacklette, Advances in polymer integrated optics. IEEE J. Sel. Top Quantum Electron 6, 54–68 (2000). https://doi.org/10.1109/2944.826873

    Article  CAS  Google Scholar 

  2. R.A.S. Ferreira, P.S. Andre, L.D. Carlos, Organic-inorganic hybrid materials towards passive and active architectures for the next generation of optical networks. Opt. Mat. 32, 1397–1409 (2010). https://doi.org/10.1016/j.optmat.2010.06.019

    Article  CAS  Google Scholar 

  3. W. Daum, J. Krauser, P.E. Zamzow, O. Ziemann, Polymer Optical Fibers for Data Communication (Springer, Berlin, 2002)

    Book  Google Scholar 

  4. S. Fengyuan, N. Bamiedakis, P.P. Vasilev, R.V. Penty, I.H. White, D. Chu, Flexible multimode polymer waveguide arrays for versatile high-speed short-reach communication links. J. Lightwave Technol. 36, 2685–2693 (2018). https://doi.org/10.1109/JLT.2018.2816562

    Article  Google Scholar 

  5. Y. Shi, L. Ma, M. Kaneta, B.X. Xu, X.Y. Fan, Y.D. Zhuang, Z.Y. He, High-speed performance evaluation of ultra-flexible polymer waveguides supporting meter-scale optical interconnects. Opt. Express. 30, 27236–27248 (2022). https://doi.org/10.1364/OE.460783

    Article  CAS  Google Scholar 

  6. I. Parola, E. Arrospide, F. Recart, M.A. Illarramendi, G. Durana, N. Guarrotxena, O. García, J. Zubia, Fabrication and characterization of polymer optical fibers doped with perylene-derivatives for fluorescent lighting applications. Fibers. 5, 28 (2017). https://doi.org/10.3390/fib5030028

    Article  CAS  Google Scholar 

  7. Z. Gong, Z. Xiang, X. OuYang, J. Zhang, N. Lau, J. Zhou, C.C. Chan, Wearable fiber optic technology based on smart textile: a review. Materials. 12, 3311 (2019). https://doi.org/10.3390/ma12203311

    Article  CAS  Google Scholar 

  8. K. Jakubowski, C.S. Huang, L.F. Boesel, R. Hufenus, M. Heuberger, Recent advances in photoluminescent polymer optical fibers. Curr. Opin. Solid State Mater. Sci. 25, 100912 (2021). https://doi.org/10.1016/j.cossms.2021.100912

    Article  CAS  Google Scholar 

  9. J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong, Stretchable and upconversion—luminescent polymeric optical sensor for wearable multifunctional sensing. Opt. Lett. 44, 5747–5750 (2019). https://doi.org/10.1364/OL.44.005747

    Article  CAS  Google Scholar 

  10. S. Nizamoglu, M.C. Gather, M. Humar, M. Choi, S. Kim, K.S. Kim, S.K. Hahn, G. Scarcelli, M. Randolph, R.W. Redmond, S.H. Yun, Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Comm. 7, 10374 (2016). https://doi.org/10.1038/ncomms10374

    Article  CAS  Google Scholar 

  11. Y. Wang, Y. Huang, H.Y. Bai, G.Q. Wang, X.H. Hu, S. Kumar, R. Min, Biocompatible and biodegradable polymer optical fiber for biomedical application: a review. Biosensors (Basel) 11, 472 (2021). https://doi.org/10.3390/bios11120472

    Article  CAS  Google Scholar 

  12. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, M. Skorobogatiy, Prospective for biodegradable microstructured optical fibers. Opt. Lett. 32, 109–111 (2007). https://doi.org/10.1364/OL.32.000109

    Article  CAS  Google Scholar 

  13. M. Choi, J.W. Choi, S. Kim, S. Nizamoglu, S.K. Hahn, S.H. Yun, Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics. 7, 987–994 (2013). https://doi.org/10.1038/NPHOTON.2013.278

    Article  CAS  Google Scholar 

  14. S.T. Parker, P. Domachuk, J. Amsden, J. Bressner, J.A. Lewis, D.L. Kaplan, F.G. Omenetto, Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009). https://doi.org/10.1002/adma.200801580

    Article  CAS  Google Scholar 

  15. K.H. Tow, D.M. Chow, F. Vollrath, I. Dicaire, T. Gheysens, L. Thevenaz, Exploring the use of native spider silk as an optical fiber for chemical sensing. J. Lightwave Technol. 36, 1138–1144 (2017). https://doi.org/10.1109/JLT.2017.2756095

    Article  Google Scholar 

  16. J. Feng, Q. Jiang, P. Rogin, de P.W. Oliveira, A. Campo, Printed soft optical waveguides of PLA copolymers for guiding light into tissue. ACS Appl. Mater. Interfaces 12, 20287–20294 (2020). https://doi.org/10.1021/acsami.0c03903

    Article  CAS  Google Scholar 

  17. J. Guo, M. Niu, C. Yang, Highly flexible and stretchable optical strain sensing for human motion detection. Optica. 4, 1285–1288 (2017). https://doi.org/10.1364/OPTICA.4.001285

    Article  Google Scholar 

  18. V. Prajzler, M. Neruda, P. Nekvindova, Flexible multimode polydimethyl–diphenylsiloxane optical planar waveguides. J. Mat. Sci. Mat. El. 29, 5878–5884 (2018). https://doi.org/10.1007/s10854-018-8560-z

    Article  CAS  Google Scholar 

  19. R. Fu, W. Luo, R. Nazempour, D. Tan, H. Ding, K. Zhang, L. Yin, J. Guan, X. Sheng, Implantable and biodegradable poly(L-lactic acid) fibers for optical neural interfaces. Adv. Opt. Mater. 6, 1700941 (2018). https://doi.org/10.1002/adom.201700941

    Article  CAS  Google Scholar 

  20. K. Soma, T. Ishigure, Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board. IEEE J. Sel. Top Quantum Electron 19, 3600310 (2013). https://doi.org/10.1109/JSTQE.2012.2227688

    Article  CAS  Google Scholar 

  21. S. Yakabe, H. Matsui, Y. Kobayashi, Y. Saito, K. Manabe, T. Ishigure, Multi-channel single-mode polymer waveguide fabricated using the mosquito method. J. Light Tech. 39, 547–556 (2021). https://doi.org/10.1109/JLT.2020.3029395

    Article  CAS  Google Scholar 

  22. V. Prajzler, V. Chlupaty, M. Neruda, Circular large core optical elastomer waveguides fabricated by using direct microdispense fabrication method. Optik – International Journal for Light and Electron Optics. 250, 168348 (2022). https://doi.org/10.1016/j.ijleo.2021.168348

    Article  CAS  Google Scholar 

  23. Advanced Technologies, avantor NuSil, LS 6943 datasheet available: https://www.avantorsciences.com/assetsvc/asset/en_US/id/29018084/contents/en_us_tds_nusils-6943.pdf

  24. DOW Technical Data Sheet available, https://www.farnell.com/datasheets/3154500.pdf

  25. BASF: technical information lumogen F collector dyes available, https://pdf4pro.com/amp/fullscreen/technical-information-lumogen-f-basf-22536a.html

  26. V. Prajzler, P. Nekvindova, J. Spirkova, M. Novotny, The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J. Mater. Sci: Mater. Electron. 28, 7951–7961 (2017). https://doi.org/10.1007/s10854-017-6498-1

    Article  CAS  Google Scholar 

  27. V. Prajzler, V. Chlupaty, Z. Sarsounova, The effect of gamma-ray irradiation on bulk optical plastic materials. J. Mater. Sci: Mater. Electron. 31, 22599–22615 (2020). https://doi.org/10.1007/s10854-020-04772-y

    Article  CAS  Google Scholar 

  28. V. Prajzler, M. Neruda, P. Jasek, P. Nekvindová, The properties of free-standing epoxy polymer multi-mode optical waveguides. Microsyst. Technol. 25, 257–264 (2019). https://doi.org/10.1007/s00542-018-3960-9

    Article  CAS  Google Scholar 

  29. M. Mosca, F. Caruso, L. Zambito, R. Macaluso, C. Cali, E. Feltin, Hybrid LEDs pave way to new lighting applications. Phot. Spect. 47, 60–64 (2013)

    Google Scholar 

  30. M. Grabolle, M. Starke, U. Resch-Genger, Highly fluorescent dye–nanoclay hybrid materials made from different dye classes. Langmuir 32(14), 3506–3513 (2016). https://doi.org/10.1021/acs.langmuir.5b04297

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the CTU Grant No. SGS23/181/OHK3/3T/13 as well as by the Centre of Advanced Applied Natural Sciences, Reg. No. CZ.02.1.01/0.0/0.0/16 019/0000778, supported by the Operational Programme Research, Development and Education, co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic and by the specific UCT university research funding, grant No: A1 FCHT 2023 008. The authors thank Karsten Winters from BASF Lampertheim GmbH for technical support.

Author information

Authors and Affiliations

Authors

Contributions

VP and ML have conceived and designed the experiments; ML have performed the experiments; VP, PV and PN have analysed the data and written the paper.

Corresponding author

Correspondence to Václav Prajzler.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors V. Prajzler, M. Latečka, P. Vařák and P. Nekvindová declare that they have no financial interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajzler, V., Latečka, M., Vařák, P. et al. Polydimethylsiloxane multimode optical channel waveguides doped with yellow dye fabricated by microdispensing. J Mater Sci: Mater Electron 34, 1907 (2023). https://doi.org/10.1007/s10854-023-11324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11324-7

Navigation