Skip to main content
Log in

Effects of Mn-doping on the thermoelectric properties of SrTi0.9Nb0.1O3−δ perovskite oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A thorough analysis was conducted on the electronic and thermal transport properties of Sr1−xMnxTi0.9Nb0.1O3−δ (x = 0.05 to 0.125), using thermoelectric measurements. X-ray diffraction analysis of the samples confirmed the presence of a single-phase cubic perovskite structure without any secondary phase. Doping of Mn results in a higher density of ≥ 95% achieved through conventional sintering at a significantly lower temperature of 1623 K. TGA analysis indicated that the doped samples experienced weight gain due to the reoxidation of the reduced ceramic samples. The Hall measurements unveiled a significant enhancement in both carrier mobility and carrier concentration consequent to the doping of Mn. The SEM micrographs exhibited a notable enhancement in grain growth compared to the pristine STN sample. The existence of a small polaron hopping mechanism in Mn-doped STN has been analysed. Notably, the Sr0.9Mn0.1Ti0.9Nb0.1O3 sample displayed a high ZT value of ~ 0.15 at 1173 K, representing a two-order improvement over the STN pristine sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data used in the study are available within the manuscript itself.

References

  1. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009). https://doi.org/10.1039/b822664b

    Article  CAS  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed.. Chem. Int. Ed. 48, 8616–8639 (2009)

    Article  CAS  Google Scholar 

  3. T.M. Tritt, M.A. Subramanian, Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–198 (2020)

    Article  Google Scholar 

  4. B. Sales, D. Mandrus, B. Chakoumakos et al., Filled skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B Condens. Matter. Mater. Phys. 56, 15081–15089 (1997). https://doi.org/10.1103/PhysRevB.56.15081

    Article  CAS  Google Scholar 

  5. B.C. Sales, D. Mandrus, R.K. Williams, Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (2008)

    Article  Google Scholar 

  6. M. Beekman, G.S. Nolas, Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J. Mater. Chem. 18, 842–851 (2008). https://doi.org/10.1039/b706808e

    Article  CAS  Google Scholar 

  7. T. Kanemitsu, H. Muta, K. Kurosaki, S. Yamanaka, Transport properties of niobium doped MNiSn (M-Ti, zr). Int. Conf. Thermoelectr. ICT Proc. 59, 531–534 (2006). https://doi.org/10.1109/ICT.2006.331350

    Article  Google Scholar 

  8. S. Sakurada, N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds. Appl. Phys. Lett.Lett. 86, 1–3 (2005). https://doi.org/10.1063/1.1868063

    Article  CAS  Google Scholar 

  9. S.M. Kauzlarich, S.R. Brown, G. Jeffrey Snyder, Zintl phases for thermoelectric devices. J. Chem. Soc. Dalton Trans. (2007). https://doi.org/10.1039/b702266b

    Article  Google Scholar 

  10. M.L. Liu, F.Q. Huang, L.D. Chen, I.W. Chen, A wide-band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4 (Q=S, Se). Appl. Phys. Lett.Lett. (2009). https://doi.org/10.1063/1.3130718

    Article  Google Scholar 

  11. M. Noroozi, G. Jayakumar, K. Zahmatkesh et al., Unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6, Q114–Q119 (2017). https://doi.org/10.1149/2.0021710jss

    Article  CAS  Google Scholar 

  12. Y.F. Wang, K.H. Lee, H. Ohta, K. Koumoto, Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n = 1, 2) ceramics. Ceram. Int. 34, 849–852 (2008). https://doi.org/10.1016/j.ceramint.2007.09.034

    Article  CAS  Google Scholar 

  13. M. Ohtaki, Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J. Ceram. Soc. Jpn.Jpn. 119, 770–775 (2011). https://doi.org/10.2109/jcersj2.119.770

    Article  CAS  Google Scholar 

  14. K. Koumoto, Y. Wang, R. Zhang et al., Oxide thermoelectric materials: a nanostructuring approach. Ann. Rev. Mater. Res. 40, 363–394 (2010). https://doi.org/10.1146/annurev-matsci-070909-104521

    Article  CAS  Google Scholar 

  15. A. Nag, V. Shubha, Oxide thermoelectric materials: a structure—property relationship. J. Electron. Mater. 43, 962–977 (2014). https://doi.org/10.1007/s11664-014-3024-6

    Article  CAS  Google Scholar 

  16. Y. Yin, B. Tudu, A. Tiwari, Recent advances in oxide thermoelectric materials and modules. Vacuum 146, 356–374 (2017). https://doi.org/10.1016/j.vacuum.2017.04.015

    Article  CAS  Google Scholar 

  17. S.C. Prasanth, R. Jose, A. Vijay et al., Tuning thermoelectric properties of Nb and Ta co-doped SrTiO3 ceramics. Mater. Today Proc. 64, 464–467 (2022). https://doi.org/10.1016/j.matpr.2022.04.908

    Article  CAS  Google Scholar 

  18. S. Charan Prasanth, A. Vijay, R. Jose, K. Venkata Saravanan, Liquid phase sintering of Nb doped SrTiO3-δ ceramics with enhanced thermoelectric figure of merit. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.031

    Article  Google Scholar 

  19. A. Vijay, S. Charan Prasanth, R. Jose, K.V. Saravanan, Enhancement in the electrical transport properties of CaMnO3 via La/Dy co-doping for improved thermoelectric performance. RSC Adv. 13, 19651–19660 (2023). https://doi.org/10.1039/D3RA03053A

    Article  CAS  Google Scholar 

  20. A. Vijay, S.C. Prasanth, R. Jose et al., A study on the effects of La/Sm codoping on the structural and high temperature thermoelectric properties of n-type CaMnO3−δ perovskite. Cryst. Res. Technol.. Res. Technol. 57, 1–11 (2022). https://doi.org/10.1002/crat.202200041

    Article  CAS  Google Scholar 

  21. J. Hoemke, A.U. Khan, H. Yoshida et al., Microstructural analysis and thermoelectric properties of Sn–Al co-doped ZnO ceramics. AIP Conf. Proc. 1763, 515–522 (2016). https://doi.org/10.1063/1.4961357

    Article  Google Scholar 

  22. F. Azough, S.S. Jackson, D. Ekren et al., Concurrent la and A-site vacancy doping modulates the thermoelectric response of SrTiO3: experimental and computational evidence. ACS Appl. Mater. Interfaces 9, 41988–42000 (2017). https://doi.org/10.1021/acsami.7b14231

    Article  CAS  Google Scholar 

  23. A. Spinelli, M.A. Torija, C. Liu et al., Electronic transport in doped SrTiO3: conduction mechanisms and potential applications. Phys. Rev. B Condens. Matter. Mater. Phys. 81, 1–14 (2010). https://doi.org/10.1103/PhysRevB.81.155110

    Article  CAS  Google Scholar 

  24. S. Hui, A. Petric, Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J. Eur. Ceram. Soc. 22, 1673–1681 (2002). https://doi.org/10.1016/S0955-2219(01)00485-X

    Article  CAS  Google Scholar 

  25. J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices. J. Mater. Res. 32, 183–203 (2017). https://doi.org/10.1557/jmr.2016.419

    Article  CAS  Google Scholar 

  26. P. Blennow, A. Hagen, K.K. Hansen et al., Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ion. (2008). https://doi.org/10.1016/j.ssi.2008.06.023

    Article  Google Scholar 

  27. A.V. Kovalevsky, M.H. Aguirre, S. Populoh et al., Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. J. Mater. Chem. A Mater. 5, 3909–3922 (2017). https://doi.org/10.1039/c6ta09860f

    Article  CAS  Google Scholar 

  28. A. Tkach, P.M. Vilarinho, A.L. Kholkin et al., Broad-band dielectric spectroscopy analysis of relaxational dynamics in Mn-doped SrTiO3 ceramics. Phys. Rev. B Condens. Matter. Mater. Phys. 73, 1–7 (2006). https://doi.org/10.1103/PhysRevB.73.104113

    Article  CAS  Google Scholar 

  29. D. Choudhury, S. Mukherjee, P. Mandal et al., Tuning of dielectric properties and magnetism of SrTiO3 by site-specific doping of Mn. Phys. Rev. B Condens. Matter. Mater. Phys. (2011). https://doi.org/10.1103/PhysRevB.84.125124

    Article  Google Scholar 

  30. R.O. Kuzian, V.V. Laguta, A.M. Daré et al., Mechanisms of magnetoelectricity in manganese-doped incipient ferroelectrics. EPL (2010). https://doi.org/10.1209/0295-5075/92/17007

    Article  Google Scholar 

  31. P. Singh, O. Parkash, D. Kumar, Electrical conduction behavior of La and Mn substituted strontium titanate. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2204347

    Article  Google Scholar 

  32. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Dependence of dielectric properties of manganese-doped strontium titanate ceramics on sintering atmosphere. Acta Mater. Mater. 54, 5385–5391 (2006). https://doi.org/10.1016/j.actamat.2006.07.007

    Article  CAS  Google Scholar 

  33. D. Mohan Radheep, Effect of Ca and/or Mn substitution on thermoelectric properties of SrTiO3. Eur. Phys. J. Appl. Phys. 93, 30902 (2021). https://doi.org/10.1051/epjap/2021200297

    Article  CAS  Google Scholar 

  34. S. Charan Prasanth, R. Jose, A. Vijay et al., An investigation of thermoelectric power factor of Mn and Nb doped SrTiO3 ceramics. Mater. Today Proc. 51, 1751–1753 (2021). https://doi.org/10.1016/j.matpr.2020.12.178

    Article  CAS  Google Scholar 

  35. V. Petrícek, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Zeitschrift fur Kristallographie 229, 345–352 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  36. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 02, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  Google Scholar 

  37. A. Tkach, J. Resende, K.V. Saravanan et al., Abnormal grain growth as a method to enhance the thermoelectric performance of Nb-doped strontium titanate ceramics. ACS Sustain. Chem. Eng. 6, 15988–15994 (2018). https://doi.org/10.1021/acssuschemeng.8b03875

    Article  CAS  Google Scholar 

  38. P. Qiao, Y. Zhang, X. Chen et al., Effect of Mn-doping on dielectric and energy storage properties of (Pb0.91La0.06)(Zr0.96Ti0.04)O3 antiferroelectric ceramics. J. Alloys Compd. 780, 581–587 (2019). https://doi.org/10.1016/j.jallcom.2018.11.371

    Article  CAS  Google Scholar 

  39. T. Zou, X. Wang, W. Zhao, L. Li, Preparation and properties of fine-grain (1–x)BiScO3-xPbTiO3 ceramics by two-step sintering. J. Am. Ceram. Soc. 91, 121–126 (2008). https://doi.org/10.1111/j.1551-2916.2007.01903.x

    Article  CAS  Google Scholar 

  40. P. Liu, M.Y. Li, Q. Zhang et al., High thermal stability in PLZST anti-ferroelectric energy storage ceramics with the coexistence of tetragonal and orthorhombic phase. J. Eur. Ceram. Soc. 38, 5396–5401 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.08.003

    Article  CAS  Google Scholar 

  41. R.H.R. Castro, D. Gouvêa, Sintering and nanostability: the thermodynamic perspective. J. Am. Ceram. Soc. 99, 1105–1121 (2016)

    Article  CAS  Google Scholar 

  42. M.D. Gross, K.M. Carver, M.A. Deighan et al., Redox stability of SrNb[sub x]Ti[sub 1–x]O[sub 3]–YSZ for use in SOFC anodes. J. Electrochem. Soc.Electrochem. Soc. 156, B540 (2009). https://doi.org/10.1149/1.3078406

    Article  CAS  Google Scholar 

  43. L. Yang, K. Xie, S. Xu et al., Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis. Dalton Trans. 43, 14147–14157 (2014). https://doi.org/10.1039/c4dt01430h

    Article  CAS  Google Scholar 

  44. S.R.S. Kumar, M.N. Hedhili, D. Cha et al., Thermoelectric properties of strontium titanate superlattices incorporating niobium oxide nanolayers. Chem. Mater. 26, 2726–2732 (2014). https://doi.org/10.1021/cm500646f

    Article  CAS  Google Scholar 

  45. N. Wang, H. Li, Y. Ba et al., Effects of YSZ additions on thermoelectric properties of Nb-doped strontium titanate. J. Electron. Mater. 39, 1777–1781 (2010). https://doi.org/10.1007/s11664-010-1144-1

    Article  CAS  Google Scholar 

  46. O. Okhay, S. Zlotnik, W. Xie et al., Thermoelectric performance of Nb-doped SrTiO3 enhanced by reduced graphene oxide and Sr deficiency cooperation. Carbon N Y 143, 215–222 (2019). https://doi.org/10.1016/j.carbon.2018.11.023

    Article  CAS  Google Scholar 

  47. B. Zhang, J. Wang, T. Zou et al., High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C Mater. 3, 11406–11411 (2015). https://doi.org/10.1039/c5tc02016f

    Article  CAS  Google Scholar 

  48. S. Ohta, H. Ohta, K. Koumoto, Grain size dependence of thermoelectric performance of Nb-doped SrTiO3 polycrystals. J. Ceram. Soc. Jpn.Jpn. 114, 102–105 (2006). https://doi.org/10.2109/JCERSJ.114.102

    Article  CAS  Google Scholar 

  49. N. Wang, H. Chen, H. He et al., Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. (2013). https://doi.org/10.1038/srep03449

    Article  Google Scholar 

  50. C. Wu, J. Li, Y. Fan et al., The effect of reduced graphene oxide on microstructure and thermoelectric properties of Nb-doped A-site-deficient SrTiO3 ceramics. J. Alloys Compd. 786, 884–893 (2019). https://doi.org/10.1016/j.jallcom.2019.01.376

    Article  CAS  Google Scholar 

  51. Wolfram T, Callaway J (1963) Physical review letters 1 march 1965 dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO~"t

  52. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Structure-microstructure-dielectric tunability relationship in Mn-doped strontium titanate ceramics. Acta Mater. Mater. 53, 5061–5069 (2005). https://doi.org/10.1016/j.actamat.2005.07.029

    Article  CAS  Google Scholar 

  53. D. Choudhury, B. Pal, A. Sharma et al., Magnetization in electron-and Mn-doped SrTiO3. Sci. Rep. 3, 1–4 (2013). https://doi.org/10.1038/srep01433

    Article  CAS  Google Scholar 

  54. P. Roy, V. Pal, T. Maiti, Effect of spark plasma sintering (SPS) on the thermoelectric properties of SrTiO3:15 at% Nb. Ceram. Int. 43, 12809–12813 (2017). https://doi.org/10.1016/j.ceramint.2017.06.170

    Article  CAS  Google Scholar 

  55. F. Ellinger, M. Shafiq, I. Ahmad et al., Small polaron formation on the Nb-doped SrTiO3(001) surface. Phys. Rev. Mater. 7, 064602 (2022)

    Article  Google Scholar 

  56. D. Emin, Polarons (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  57. T. Suzuki, I. Kosacki, H.U. Anderson, P. Colomban, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J. Am. Ceram. Soc. 84, 2007–2014 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00950.x

    Article  CAS  Google Scholar 

  58. S. Min, J. Blumm, A. Lindemann, A new laser flash system for measurement of the thermophysical properties. Thermochim. Acta. Acta 455, 46–49 (2007). https://doi.org/10.1016/j.tca.2006.11.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ammu Vijay acknowledges DST SERB project ECR/2015/000273 dated 4th November 2016 for the funding.

Funding

This work received support from DST SERB (Grant No. ECR/2015/000273).

Author information

Authors and Affiliations

Authors

Contributions

SCP contributed to conceptualization, data Curation, formal analysis, methodology, writing—original draft, and writing—review & editing. AV contributed to formal Analysis, validation, and visualization. KK contributed to data curation, formal analysis, software, and visualization. RJ contributed to conceptualization, formal analysis, methodology, software, and writing—review & editing. VM contributed to investigation, validation, and writing—review & editing. VS contributed to conceptualization, funding acquisition, resources, and supervision.

Corresponding author

Correspondence to S. Charan Prasanth.

Ethics declarations

Conflicts of interest

All authors declares that they have no conflict to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charan Prasanth, S., Vijay, A., Kannan, K. et al. Effects of Mn-doping on the thermoelectric properties of SrTi0.9Nb0.1O3−δ perovskite oxide. J Mater Sci: Mater Electron 34, 1944 (2023). https://doi.org/10.1007/s10854-023-11319-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11319-4

Navigation