Skip to main content
Log in

A suitable approach to achieve functional (Bi, Na)TiO3-based lead-free piezoceramics via compositional design for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, sodium bismuth titanate based lead-free piezoceramics with modifiable dielectric and energy storage properties by compositional modification through Nb doping (0.94Bi0.5Na0.5TiO3–0.06BaTiO3–xNb2O5) were obtained. Nb doping on 0.94Bi0.5Na0.5TiO3–0.06BaTiO3-based ceramics produces a bifunctional behavior, which is governed by controlling the structural and microstructural characteristics of the system. Whereby the incorporation of Nb+5 leads to a change from rhombohedral–tetragonal (R–T) multiphasic coexistence to a tetragonal (T) phase at room temperature (RT) and causes a decrease in average grain size. The particularly high piezoelectric coefficient (d33), in the R–T multiphase coexistence region, facilitates the polarization and leads to a higher piezoelectric response than in the T-region. Meanwhile, increasing the Nb content improves the energy storage properties and results in a storage of energy value (Wrec) up to about 0.50 J/cm3 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and no additional source data are required.

References

  1. X.-Y. Tong, M.-W. Song, J.-J. Zhou, K. Wang, C.-L. Guan, H. Liu, J.-Z. Fang, J. Mater. Sci. : Mater. Electron. 30, 5780 (2019)

    CAS  Google Scholar 

  2. E. Ringgaard, T. Wurlitzer, J. Eur. Ceram. Soc. 25, 2701 (2005)

    Article  CAS  Google Scholar 

  3. L. Ramajo, F. Rubio-Marcos, A. Del Campo, J.F. Fernández, M.S. Castro, R. Parra, J. Mater. Sci.: Mater. Electron. 26, 9402 (2015)

    CAS  Google Scholar 

  4. A. Prado, L. Ramajo, J. Camargo, A. del Campo, P. Öchsner, F. Rubio-Marcos, M. Castro, J. Mater. Sci.: Mater. Electron. 30, 18405 (2019)

    CAS  Google Scholar 

  5. G.A. Smolenskii, V.A. Isupov, A. Isupov, I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  6. J. Suchanicz, K. Roleder, A. Kania, J. Hańaderek, Ferroelectrics. 77, 107 (1988)

    Article  CAS  Google Scholar 

  7. Y. Wu, G. Wang, Z. Jiao, Y. Fan, P. Peng, X. Dong, RSC Adv. 9, 21355 (2019)

    Article  CAS  Google Scholar 

  8. A. Prado, F. Rubio-Marcos, L. Ramajo, M.S. Castro, Bull. Mater. Sci. 43, 282 (2020)

    Article  CAS  Google Scholar 

  9. T. Takenaka, K. Maruyama, K. Sakata, Jpn J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  10. S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91, 3950 (2008)

    Article  CAS  Google Scholar 

  11. M. Saleem, I. Kim, M.-S. Kim, S.A. Pervez, U. Farooq, M.Z. Khan, A. Yaqoob, S.-J. Jeong, RSC Adv. 6, 89210 (2016)

    Article  CAS  Google Scholar 

  12. H. Luo, H. Ke, H. Zhang, L. Zhang, F. Li, L. Cao, D. Jia, Y. Zhou, Phys. B Condens Matter 567, 17 (2019)

    Article  CAS  Google Scholar 

  13. X. Sun, Z. Liu, H. Qian, Y. Liu, Y. Lyu, Ceram. Int. 47, 24207 (2021)

    Article  CAS  Google Scholar 

  14. U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, A. Feteira, Mater. Res. Bull. 97, 385 (2018)

    Article  CAS  Google Scholar 

  15. H. Wang, H. Yuan, X. Li, F. Zeng, K. Wu, Q. Zheng, G. Fan, D. Lin, Chem. Eng. J. 394, 124879 (2020)

    Article  CAS  Google Scholar 

  16. Z. Liu, T. Lu, J. Ye, G. Wang, X. Dong, R. Withers, Y. Liu, Adv. Mater. Technol. 3, 1800111 (2018)

    Article  Google Scholar 

  17. W.-S. Kang, J.-H. Koh, J. Eur. Ceram. Soc. 35, 2057 (2015)

    Article  CAS  Google Scholar 

  18. W. Jo, J.-B. Ollagnier, J.-L. Park, E.-M. Anton, O.-J. Kwon, C. Park, H.-H. Seo, J.-S. Lee, E. Erdem, R.-A. Eichel, J. Rödel, J. Eur. Ceram. Soc. 31, 2107 (2011)

    Article  CAS  Google Scholar 

  19. Z.-H. Zhao, R.-F. Ge, Y. Dai, J. Adv. Dielect. 09, 1950022 (2019)

    Article  CAS  Google Scholar 

  20. C. Ma, X. Tan, Solid State Commun. 150, 1497 (2010)

    Article  CAS  Google Scholar 

  21. Y. Jia, X. Wei, L. Xu, C. Wang, P. Lian, S. Xue, A. Al-Saadi, Y. Shi, Compos. B Eng. 161, 376 (2019)

    Article  Google Scholar 

  22. S. Zhu, L. Cao, Z. Xiong, C. Lu, Z. Gao, J. Eur. Ceram. Soc. 38, 2251 (2018)

    Article  CAS  Google Scholar 

  23. S. Trujillo, J. Kreisel, Q. Jiang, J.H. Smith, P.A. Thomas, P. Bouvier, F. Weiss, J. Phys.: Condens. Matter 17, 6587 (2005)

    CAS  Google Scholar 

  24. M. Zannen, A. Lahmar, M. Dietze, H. Khemakhem, A. Kabadou, M. Es-Souni, Mater. Chem. Phys. 134, 829 (2012)

    Article  CAS  Google Scholar 

  25. R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, J. Phys.: Condens. Matter 23, 055901 (2011)

    Google Scholar 

  26. F. Rubio-Marcos, A. del Campo, J.F. Fernandez, Confocal Raman Microscopy (Springer, Cham, 2018), pp.531–556

    Book  Google Scholar 

  27. F. Rubio-Marcos, A. Del Campo, R. López-Juárez, J.J. Romero, J.F. Fernández, J. Mater. Chem. 22, 9714 (2012)

    Article  CAS  Google Scholar 

  28. A. Prado-Espinosa, J. Camargo, A. del Campo, F. Rubio-Marcos, M. Castro, L. Ramajo, J. Alloys Compd. 739, 799 (2018)

    Article  CAS  Google Scholar 

  29. J.E. Garcia, F. Rubio-Marcos, J. Appl. Phys. 127, 131102 (2020)

    Article  CAS  Google Scholar 

  30. D.A. Ochoa, F. Suñol, F. Rubio-Marcos, J.E. García, J. Eur. Ceram. Soc. 38, 4659 (2018)

    Article  CAS  Google Scholar 

  31. F. Rubio-Marcos, A. Del Campo, J. Ordoñez-Pimentel, M. Venet, R.E. Rojas-Hernandez, D. Páez-Margarit, D.A. Ochoa, J.F. Fernández, J.E. García, ACS Appl. Mater. Interfaces. 13, 20858 (2021)

    Article  CAS  Google Scholar 

  32. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96, 202901 (2010)

    Article  Google Scholar 

  33. N. Petnoi, P. Bomlai, S. Jiansirisomboon, A. Watcharapasorn, Ceram. Int. 39, S113 (2013)

    Article  CAS  Google Scholar 

  34. R. Zuo, H. Wang, B. Ma, L. Li, J. Mater. Sci.: Mater. Electron. 20, 1140 (2009)

    CAS  Google Scholar 

  35. L. Miaomiao, Z. Mankang, Z. Mupeng, H. Yudong, J. Mater. Chem. C 10, 8845 (2022)

    Article  Google Scholar 

  36. J. Shi, H. Fan, X. Liu, A.J. Bell, J. Am. Ceram. Soc. 97, 848 (2014)

    Article  CAS  Google Scholar 

  37. R.A. Malik, A. Hussain, M. Acosta, J. Daniels, H.-S. Han, M.-H. Kim, J.-S. Lee, J. Eur. Ceram. Soc. 38, 2511 (2018)

    Article  CAS  Google Scholar 

  38. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)

    Article  CAS  Google Scholar 

  39. N. Zhang, X. Lv, X. Zhang, A. Cui, Z. Hu, J. Wu, ACS Appl. Mater. Interfaces. 13, 60227 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The Spanish Ministry of Economy and Competitiveness (MINECO) provided support for this work under project PID2020-114192RB-C41. FR-M received financial assistance from the Comunidad de Madrid for the “Doctorados Industriales” project (IND2020/IND-17375), co-financed by the European Social Fund. MD, MC, LR would like to express their gratitude for the support they received from CONICET and the National University of Mar del Plata (Argentina).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MD, LR, MC and FR-M. The first draft of the manuscript was written by MD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mauro Difeo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Difeo, M., Rubio-Marcos, F., Del Campo, A. et al. A suitable approach to achieve functional (Bi, Na)TiO3-based lead-free piezoceramics via compositional design for energy storage applications. J Mater Sci: Mater Electron 34, 1962 (2023). https://doi.org/10.1007/s10854-023-11258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11258-0

Navigation