Skip to main content
Log in

Zinc oxide-doped carbon nanofibrous binder-free membrane for the development of supercapacitor electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide-doped carbon nanofiber composite electrodes are fabricated using a one-step electrospinning process followed by thermal treatment. The composite electrodes were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and contact angle measurements. The electrochemical performance of the composite electrodes was studied using three electrode and two electrode measurements in 6 M aqueous KOH electrolyte solution. The capacitive performance of the electrode increased with the increasing of zinc oxide content. The largest specific capacitance is found to be 184 Fg−1 at 0.5 Ag−1 and 90 Fg−1 at 0.5 Ag−1 current density in three electrode and two electrode measurements, respectively. The excellent electrochemical activity is due to the improvement in hydrophilic behaviour and interconnected structure, which offer low resistance paths towards ionic transportation. Furthermore, the composite electrode exhibits an energy density of 12.5 Wh kg−1 at a power density of 500 Wh kg−1. Additionally, the supercapacitor electrode exhibits excellent cycle life with capacitance retention of about 100% of its initial value after 2000 cycles at 2 Ag−1 current density. This excellent cycling stability and high performance will have the potential for promising applications in supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. H. Shen, A. Gele, Facile synthesis of N-doped lignin-based carbon nanofibers decorated with iron oxides for flexible supercapacitor electrodes. Inorgan. Chem. Commun. 128, 108607 (2021). https://doi.org/10.1016/j.inoche.2021.108607

    Article  CAS  Google Scholar 

  2. S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2015). https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  3. Y.Z. Zhang, Y. Wang, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015). https://doi.org/10.1039/c5cs00174a

    Article  CAS  Google Scholar 

  4. G. Ghanashyam, H.K. Jeong, Synthesis of nitrogen-doped plasma treated graphite for supercapacitor applications. Chem. Phys. Lett. 725, 31–37 (2019). https://doi.org/10.1016/j.cplett.2019.04.012

    Article  CAS  Google Scholar 

  5. D. Sridhar, J.L. Meunier, S. Omanovic, Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes. Mater. Chem. Phys. 223, 434–440 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.024

    Article  CAS  Google Scholar 

  6. G. Ghanashyam, H.K. Jeong, Synthesis of plasma treated nitrogen-doped graphite oxide for supercapacitor applications. J. Energy Storage 26, 100923 (2019). https://doi.org/10.1016/j.est.2019.100923

    Article  Google Scholar 

  7. L. Chen, Z. Wen, L. Chen, W. Wang, Q. Ai, G. Hou et al., Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors. Carbon 158, 456–464 (2020). https://doi.org/10.1016/j.carbon.2019.11.012

    Article  CAS  Google Scholar 

  8. L. Chen, D. Li, L. Chen, P. Si, J. Feng, L. Zhang et al., Core-shell structured carbon nanofibers yarn@ polypyrrole@ graphene for high performance all-solid-state fiber supercapacitors. Carbon 138, 264–270 (2018). https://doi.org/10.1016/j.carbon.2018.06.022

    Article  CAS  Google Scholar 

  9. N.H.H. Phuc, M. Takaki, H. Muto, M. Reiko, H. Kazuhiro, A. Matsuda, Sulfur–carbon nano fiber composite solid electrolyte for all-solid-state Li–S batteries. ACS Appl. Energy Mater. 3(2), 1569–1573 (2020). https://doi.org/10.1021/acsaem.9b02062

    Article  CAS  Google Scholar 

  10. J. Qi, J. Li, Y. Li, X. Fang, X. Sun, J. Shen et al., Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal. Chem. Eng. J. 307, 989–998 (2017). https://doi.org/10.1016/j.cej.2016.09.022

    Article  CAS  Google Scholar 

  11. K.H. Jung, J.P. Ferraris, Preparation of porous carbon nanofibers derived from PBI/PLLA for supercapacitor electrodes. Nanotechnology 27(42), 425708 (2016). https://doi.org/10.1088/0957-4484/27/42/425708

    Article  CAS  Google Scholar 

  12. G.S. Chung, S.M. Jo, B.C. Kim, Properties of carbon nanofibers prepared from electrospun polyimide. J. Appl. Polym. Sci. 97(1), 165–170 (2005). https://doi.org/10.1002/app.21742

    Article  CAS  Google Scholar 

  13. H. Pan, J. Yang, S. Wang, Z. Xiong, W. Cai, J. Liu, Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization. J. Mater. Chem. A 3(26), 13827–13834 (2015). https://doi.org/10.1039/c5ta02954f

    Article  CAS  Google Scholar 

  14. G. Duan, S. Liu, H. Hou, Synthesis of polyacrylonitrile and mechanical properties of its electrospun nanofibers. E-Polymers 18(6), 569–573 (2018). https://doi.org/10.1515/epoly-2018-0158

    Article  CAS  Google Scholar 

  15. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff, Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 10(1), 260–267 (1998). https://doi.org/10.1021/cm970412f

    Article  CAS  Google Scholar 

  16. I. Giraud, S. Franceschi-Messant, E. Perez, C. Lacabanne, E. Dantras, Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation. Appl. Surf. Sci. 266, 94–99 (2013). https://doi.org/10.1016/j.apsusc.2012.11.098

    Article  CAS  Google Scholar 

  17. T.K. Pani, B.B. Sahoo, B. Sundaray, Carbon electrodes derived from polyacrylonitrile-polyethylene glycol blend for high-performance supercapcitor. Mater. Res. Express 6(12), 125077 (2019). https://doi.org/10.1088/2053-1591/ab59e7

    Article  CAS  Google Scholar 

  18. T. Yumak, D. Bragg, E.M. Sabolsky, Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Appl. Surf. Sci. 469, 983–993 (2019). https://doi.org/10.1016/j.apsusc.2018.09.079

    Article  CAS  Google Scholar 

  19. H. Wang, H. Niu, H. Wang, W. Wang, X. Jin, H. Wang et al., Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. J. Power Sources 482, 228986 (2021). https://doi.org/10.1016/j.jpowsour.2020.228986

    Article  CAS  Google Scholar 

  20. G. Ghanashyam, H.K. Jeong, Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. J. Energy Storage 33, 102150 (2021). https://doi.org/10.1016/j.est.2020.102150

    Article  Google Scholar 

  21. G. Chen, T. Chen, K. Hou, W. Ma, M. Tebyetekerwa, Y. Cheng et al., Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 127, 218–227 (2018). https://doi.org/10.1016/j.carbon.2017.11.012

    Article  CAS  Google Scholar 

  22. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, L. Pan, Review on carbon-based composite materials for capacitive deionization. RSC Adv. 5(20), 15205–15225 (2015). https://doi.org/10.1039/c4ra14447c

    Article  CAS  Google Scholar 

  23. L.M. Chang, X.Y. Duan, W. Liu, Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination 270(1–3), 285–290 (2011). https://doi.org/10.1016/j.desal.2011.01.008

    Article  CAS  Google Scholar 

  24. X. Lei, B. Wang, J. Liu, Z. Ye, Z. Chang, M. Jiang, X. Sun, Three-dimensional NiAl-mixed metal oxide film: preparation and capacitive deionization performances. RSC Adv. 4(78), 41642–41648 (2014). https://doi.org/10.1039/c4ra08415b

    Article  CAS  Google Scholar 

  25. B. Yan, J. Zheng, F. Wang, L. Zhao, Q. Zhang, W. Xu, S. He, Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Mater. Des. 201, 109518 (2021). https://doi.org/10.1016/j.matdes.2021.109518

    Article  CAS  Google Scholar 

  26. X. Li, Z. Wang, Y. Qiu, Q. Pan, P. Hu, 3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. J. Alloy. Compd. 620, 31–37 (2015)

    Article  CAS  Google Scholar 

  27. G. Huang, W. Zhang, S. Xu, Y. Li, Y. Yang, Microspherical ZnO synthesized from a metal-organic precursor for supercapacitors. Ionics 22(11), 2169–2174 (2016)

    Article  CAS  Google Scholar 

  28. F. Ahmed, G. Almutairi, B. AlOtaibi, S. Kumar, N. Arshi, S.G. Hussain et al., Binder-free electrode based on ZnO nanorods directly grown on aluminum substrate for high performance supercapacitors. Nanomaterials 10(10), 1979 (2020)

    Article  CAS  Google Scholar 

  29. C.T. Altaf, O. Coskun, A. Kumtepe, A.M. Rostas, I. Iatsunskyi, E. Coy et al., Photo-supercapacitors based on nanoscaled ZnO. Sci. Rep. 12, 1 (2022)

    Article  Google Scholar 

  30. W.K. Chee, H.N. Lim, Z. Zainal, I. Harrison, N.M. Huang, Y. Andou et al., Electrospun nanofiber membranes as ultrathin flexible supercapacitors. RSC Adv. 7(20), 12033–12040 (2017)

    Article  CAS  Google Scholar 

  31. J. Ju, N. Deng, D. Zhang, J. Yan, L. Li, W. Kang, B. Cheng, Facile construction of PCNF&CNT composite material by one-step simultaneous carbonization and chemical vapor deposition. J. Mater. Sci. 54(2), 1616–1628 (2019)

    Article  CAS  Google Scholar 

  32. Y. Zhao, G. Luo, L. Zhang, L. Gao, D. Zhang, Z. Fan, Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization. Electrochim. Acta 331, 135420 (2020)

    Article  CAS  Google Scholar 

  33. Y.N. Liu, H.T. Wang, X.H. Kang, Y.F. Wang, S.Y. Yang, S.W. Bian, Cotton fabric and zeolitic imidazolate framework (ZIF-8) derived hierarchical nitrogen-doped porous carbon nanotubes/carbon fabric electrodes for all-solid-state supercapacitors. J. Power Sources 402, 413–421 (2018)

    Article  CAS  Google Scholar 

  34. W. Wang, S. Jiao, J. Cao, H.E. Naguib, Zinc oxide/carbon nanotube nanocomposite for high-performance flexible supercapacitor with sensing ability. Electrochim. Acta 350, 136353 (2020)

    Article  CAS  Google Scholar 

  35. L.F. Chen, Y. Lu, L. Yu, X.W.D. Lou, Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10(8), 1777–1783 (2017). https://doi.org/10.1039/c7ee00488e

    Article  CAS  Google Scholar 

  36. L.Q. Wei, J.Y. Lu, Q.Q. Li, Y. Zhou, L.L. Tang, F.Y. Li, A porous Ca-MOF with nano-sized Ca11 as building unit: structure, drug loading and release properties. Inorg. Chem. Commun. 100(78), 43–47 (2017). https://doi.org/10.1016/j.inoche.2017.02.010

    Article  CAS  Google Scholar 

  37. A.V. Raghu, H.M. Jeong, J.H. Kim, Y.R. Lee, Y.B. Cho, K. Sirsalmath, Synthesis and characterization of novel polyurethanes based on 4-{(4-hydroxyphenyl) iminomethyl} phenol. Macromol. Res. 16, 194–199 (2008)

    Article  CAS  Google Scholar 

  38. A.V. Raghu, G.S. Gadaginamath, H.M. Jeong, N.T. Mathew, S.B. Halligudi, T.M. Aminabhavi, Synthesis and characterization of novel Schiff base polyurethanes. J. Appl. Polym. Sci. 113(5), 2747–2754 (2009). https://doi.org/10.1002/app.28257

    Article  CAS  Google Scholar 

  39. R. Zamiri, A. Rebelo, G. Zamiri, A. Adnani, A. Kuashal, M.S. Belsley, J.M.F. Ferreira, Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. RSC Adv. 4(40), 20902–20908 (2014). https://doi.org/10.1039/C4RA01563K

    Article  CAS  Google Scholar 

  40. J. Li, Y. Sun, W. Kang, P. Wang, H. Zhang, X. Zhang et al., Green synthesis of cellulose/graphene oxide/ZIF8 derived highly conductivity integrated film electrode for supercapacitor. Carbon 185, 599–607 (2021)

    Article  CAS  Google Scholar 

  41. M.R. Pallavolu, J. Nallapureddy, R.R. Nallapureddy, G. Neelima, A.K. Yedluri, T.K. Mandal et al., Self-assembled and highly faceted growth of Mo and V doped ZnO nanoflowers for high-performance supercapacitors. J. Alloys Compd. 886, 161234 (2021)

    Article  CAS  Google Scholar 

  42. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, S.K. Ray, Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 4(1), 1–9 (2014)

    Article  Google Scholar 

  43. Y.G. Lin, Y.K. Hsu, Y.C. Chen, L.C. Chen, S.Y. Chen, K.H. Chen, Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 4(20), 6515–6519 (2012)

    Article  CAS  Google Scholar 

  44. U. Kurtan, U. Sahinturk, H. Aydın, D. Dursun, A. Baykal, CoFe nanoparticles in carbon nanofibers as an electrode for ultra-stable supercapacitor. J. Inorgan. Organometall. Polym. Mater. 30(9), 3608–3616 (2020). https://doi.org/10.1007/s10904-020-01524-7

    Article  CAS  Google Scholar 

  45. S.C. Lin, Y.T. Lu, Y.A. Chien, J.A. Wang, T.H. You, Y.S. Wang et al., Asymmetric supercapacitors based on functional electrospun carbon nanofiber/manganese oxide electrodes with high power density and energy density. J. Power Sources 362, 258–269 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.052

    Article  CAS  Google Scholar 

  46. J. Huang, B. Zhang, Y.Y. Xie, W.W.K. Lye, Z.L. Xu, S. Abouali et al., Electrospun graphitic carbon nanofibers with in-situ encapsulated Co–Ni nanoparticles as freestanding electrodes for Li–O2 batteries. Carbon 100, 329–336 (2016). https://doi.org/10.1016/j.carbon.2016.01.012

    Article  CAS  Google Scholar 

  47. C.H. Kim, B.H. Kim, Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J. Power Sources 274, 512–520 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.126

    Article  CAS  Google Scholar 

  48. J.H. Kwak, Y.W. Lee, J.H. Bang, Supercapacitor electrode with an ultrahigh Co3O4 loading for a high areal capacitance. Mater. Lett. 110, 237–240 (2013). https://doi.org/10.1016/j.matlet.2013.08.032

    Article  CAS  Google Scholar 

  49. Q. Jiang, X. Pang, S. Geng, Y. Zhao, X. Wang, H. Qin et al., Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance. Appl. Surf. Sci. 479, 128–136 (2019). https://doi.org/10.1016/j.apsusc.2019.02.077

    Article  CAS  Google Scholar 

  50. H.B.M. Emrooz, A.A. Aghdaee, M.R. Rostami, Zinc-salt assisted synthesis of three-dimensional oxygen and nitrogen co-doped hierarchical micro-meso porous carbon foam for supercapacitors. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  51. S. Lv, L. Ma, X. Shen, H. Tong, Dual pore-former method to prepare nitrogen-doped hierarchical porous carbons for supercapacitors. J. Alloy. Compd. 895, 162587 (2022)

    Article  CAS  Google Scholar 

  52. G. Duan, L. Zhao, C. Zhang, L. Chen, Q. Zhang, K. Liu, F. Wang, Pyrolysis of zinc salt-treated flax fiber: Hierarchically porous carbon electrode for supercapacitor. Diamond Relat. Mater. 129, 109339 (2022)

    Article  CAS  Google Scholar 

  53. G. Duan, L. Zhao, L. Chen, F. Wang, S. He, S. Jiang, Q. Zhang, ZnCl 2 regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New J. Chem. 45(48), 22602–22609 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

BBS: Conceptualization, Methodology, investigation, Formal analysis, Visualization, Writing original draft. BS: Supervision, validation, Review, Editing.

Corresponding author

Correspondence to Bibekananda Sundaray.

Ethics declarations

Conflict of interest

The author claim that they have no personal relationship and no known competing financial interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B.B., Sundaray, B. Zinc oxide-doped carbon nanofibrous binder-free membrane for the development of supercapacitor electrode. J Mater Sci: Mater Electron 34, 1882 (2023). https://doi.org/10.1007/s10854-023-11250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11250-8

Navigation