Skip to main content
Log in

Microwave reduced graphene oxide sheets for high performance supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Among the new generation of carbon materials, graphene stands out due to its extraordinary physicochemical properties, making it highly suitable for the fabrication of high-energy storage devices. In this report, we present the utilization of microwave-reduced graphene oxide (MrGO) as the material for supercapacitor electrodes. This method proves to be cost-effective and readily reproducible. To analyze the synthesized electrode material comprehensively, we conducted structural and spectroscopic examinations employing various techniques, including X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy and FTIR spectroscopy. The resulting supercapacitor device exhibits an impressive specific capacitance of 382 F g−1 at a scan rate of 5 mV s−1. After subjecting the device to 10,000 cycles, the Coulombic efficiency remained remarkably high. Importantly, our proposed method demonstrates excellent scalability, capable of producing advanced and efficient supercapacitors in large quantities. Furthermore, we determined that the maximum energy density and power density of this setup are 45 Wh kg−1 and 700 W kg−1, respectively. These findings underscore the tremendous potential of MrGO in the development of high-performance supercapacitors, showcasing its prowess in energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or used in the study are presented in the submitted article.

References

  1. S. Huang, X. Zhu, S. Sarkar, Y. Zhao, APL Mater. 7(10), 100901 (2019)

    Article  Google Scholar 

  2. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10(12), 4863–4868 (2010)

    Article  CAS  Google Scholar 

  3. Y. Sun, X. Wang, X. Wu, Mater. Res. Bull. 158, 112073 (2023)

    Article  CAS  Google Scholar 

  4. X. Wang, Y. Sun, W.-C. Zhang, X. Wu, Chin. Chem. Lett. 34(3), 107593 (2023)

    Article  CAS  Google Scholar 

  5. Y. Liu, Y. Liu, X. Wu, Chin. Chem. Lett., 107839 (2022)

  6. M. Dai, D. Zhao, X. Wu, Chin. Chem. Lett. 31(9), 2177–2188 (2020)

    Article  CAS  Google Scholar 

  7. M.Z. Iqbal, U. Aziz, J. Energy Storage. 46, 103823 (2022)

    Article  Google Scholar 

  8. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Catalysts. 10(9), 969 (2020)

    Article  CAS  Google Scholar 

  9. M.B. Burnett, L.J. Borle, IEEE Vehicle Power and Propulsion Conference. pp. 7 (2005)

  10. A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, J. Zuo, J. Pedrós, F. Calle, J. Martinez, Sustainable Energy & Fuels. 5(5), 1235–1254 (2021)

    Article  CAS  Google Scholar 

  11. F.W. Low, M. Shakeri, S. Mahalingam, C.T. Yaw, N.A. Samsudin, S.M. Goh, C.F. Chau, C.W. Lai, Hen, (2020)

  12. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, ACS Appl. Mater. Interfaces. 6(20), 17426–17436 (2014)

    Article  CAS  Google Scholar 

  13. S. Kumar, M. Kaur, Mater. Chem. Phys. 259, 123967 (2021)

    Article  CAS  Google Scholar 

  14. S. Rattan, S. Kumar, J.K. Goswamy, J. Nanosci. Nanotechnol. 21(3), 1667–1671 (2021)

    Article  CAS  Google Scholar 

  15. X. Xiang, Y. Zhu, M. Yin, S. Xia, C. Guo, J. Mater. Sci. 57(5), 3280–3294 (2022)

    Article  CAS  Google Scholar 

  16. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Adv. Funct. Mater. 23(26), 3353–3360 (2013)

    Article  CAS  Google Scholar 

  17. X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Adv. Energy Mater. 8(7), 1702184 (2018)

    Article  Google Scholar 

  18. S. Rattan, M. Kaur, S. Kumar, J.K. Goswamy, J. Mater. Sci.: Mater. Electron. 33(36), 26841–26851 (2022)

    Google Scholar 

  19. M. Kaur, P. Kumar, B. Prakash, J.K. Gowsamy, S. Kumar, Mater. Chem. Phys. 296, 127204 (2023)

    Article  Google Scholar 

  20. A.C. Ferrari, J. Robertson, Phys. Rev. B 61(20), 14095 (2000)

    Article  CAS  Google Scholar 

  21. S. Arshadi Rastabi, R. Sarraf-Mamoory, G. Razaz, N. Blomquist, M. Hummelgård, H. Olin, Plos One. 16(7), e0254023 (2021)

    Article  CAS  Google Scholar 

  22. I. Childres, L.A. Jauregui, W. Park, H. Cao, Y.P. Chen, New. Developments in Photon and Materials Research. 1, 1–20 (2013)

    Google Scholar 

  23. Z. Khosroshahi, M. Kharaziha, F. Karimzadeh, A. Allafchian, (unpublished)

  24. A. Longo, M. Palomba, G. Carotenuto, Coatings. 10(7), 693 (2020)

    Article  CAS  Google Scholar 

  25. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Physica Status Solidi 218(12), 2100138 (2021)

    Article  CAS  Google Scholar 

  26. Z. Hu, L. Zu, Y. Jiang, H. Lian, Y. Liu, Z. Li, F. Chen, X. Wang, X. Cui, Polymers. 7(10), 1939–1953 (2015)

    Article  CAS  Google Scholar 

  27. S. Verma, R.K. Dutta, RSC Adv. 5(94), 77192–77203 (2015)

    Article  CAS  Google Scholar 

  28. B. Fan, H. Guo, J. Shi, C. Shi, Y. Jia, H. Wang, D. Chen, Y. Yang, H. Lu, H. Xu, J. Nanosci. Nanotechnol. 16(7), 7049–7054 (2016)

    Article  CAS  Google Scholar 

  29. Z.K. Ghouri, N.A.M. Barakat, H.Y. Kim, Energy Environ. Focus. 4(1), 34–39 (2015)

    Article  Google Scholar 

  30. B. Guo, J. Tian, X. Yin, G. Xi, W. Wang, X. Shi, W. Wu, Colloids Surf., a 595, 124683 (2020)

    Article  CAS  Google Scholar 

  31. S. Lin, J. Tang, K. Zhang, T.S. Suzuki, Q. Wei, M. Mukaida, Y. Zhang, H. Mamiya, X. Yu, L.-C. Qin, J. Power Sources. 482, 228995 (2021)

    Article  CAS  Google Scholar 

  32. L.W. Le Fevre, J. Cao, I.A. Kinloch, A.J. Forsyth, R.A.W. Dryfe, Chemistry Open 8(4), 418–428 (2019)

    Google Scholar 

  33. M.H. BinSabt, A. Galal, And A. Abdel Nazeer, Materials. 16(8), 3068 (2023)

    CAS  Google Scholar 

  34. K.A. Kumar, A. Pandurangan, S. Arumugam, M. Sathiskumar, Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-37463-0

    Article  Google Scholar 

  35. M. Majumder, R.B. Choudhary, A.K. Thakur, I. Karbhal, RSC Adv. 7(32), 20037–20048 (2017)

    Article  Google Scholar 

  36. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Nanoscale Adv. 1(10), 3807–3835 (2019)

    Article  Google Scholar 

  37. I. Aldama, V. Barranco, M. Kunowsky, J. Ibañez, J.M. Rojo, J. Phys. Chem. C 121(22), 12053–12062 (2017)

    Article  CAS  Google Scholar 

  38. N.B. Mohammed, K.M. Batoo, S. Hussain, R. Subramaniam, R. Kasi, M. Bhuyan, A. Imran, M. Muthuramamoorthy, Micromachines. 14(7), 1379 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Suresh Kumar thanks Director UIET and Vice chancellor, Panjab University for providing necessary facilities. SK acknowledges Department of Science and Technology (DST), Science and Engineering Research Board (SERB), for ECRA research grant (ECR/2016/001104).

Funding

Department of Science and Technology (DST), Science and Engineering Research Board (SERB), for ECRA research grant (ECR/2016/001104).

Author information

Authors and Affiliations

Authors

Contributions

T: Investigation, experimentation and writing original draft. A: Methodology and experimentation. MK: Data curation. SR: Data validation and characterization. JKG: Data validation and editing. SK: Conceptualization, editing and supervision. PK: Supervision and editing.

Corresponding authors

Correspondence to Parveen Kumar or Suresh Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The submission has been approved by all co-authors.

Research involving human and/or animal participants

This study does not involve any studies with human participants and/or animals.

Informed consent

Informed consent was received from all authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 29,211 kb)

Supplementary material 2 (DOCX 151 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Twinkle, Anjali, Kaur, M. et al. Microwave reduced graphene oxide sheets for high performance supercapacitor applications. J Mater Sci: Mater Electron 34, 1894 (2023). https://doi.org/10.1007/s10854-023-11246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11246-4

Navigation