Skip to main content
Log in

Room-temperature multiferroic (magnetoelectric–magnetodielectric) coupling properties of hybrid microwave-sintered (1 − x)BaZr0.25Ti0.75O3 − xCo0.9Ni0.1Fe2O4 lead-free electromagnetic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports on the systematic investigation of the room-temperature magnetoelectric and magnetodielectric coupling coefficients on adding ferromagnetic phase (xCo0.9Ni0.1Fe2O4, where x = 0.1, 0.2, 0.3, and 0.4) to the non-toxic lead-free ferroelectric phase (BaZr0.25Ti0.75O3) prepared via efficient, ultrafast, eco-friendly hybrid microwave sintering at 1100 °C. Rietveld’s refinement of the observed diffraction patterns reflects mixed-phase cubic and tetragonal crystal symmetries with space group Pm3m and P4mm for the ferroelectric phase and cubic Fd-3m for a ferromagnetic phase in each composite which was further verified through micro-Raman spectroscopy. Ferroelectric-ferrite composite at x = 0.2, i.e., 0.8(BaZr0.25Ti0.75O3) − 0.2(Co0.9Ni0.1Fe2O4), had highest magnetoelectric and magnetodielectric coupling coefficients \({\alpha }_{\mathrm{ME}}= 2.71\mathrm{ mV}/\mathrm{cm Oe}\) and MD (%) = 5.19 at 1 kHz applied frequency, respectively. The existence of both ferroelectric and magnetic phases in each composite was confirmed using PE and MH hysteresis loops, respectively. This study provides an efficient alternative approach for developing multiferroic composites for various technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, Y.D. Kolekar, B.K. Chougule, Dielectric properties and magnetoelectric effect of (x)NiFe2O4+(1–x)Ba0.8Sr0.2TiO3 composites. J. Phys. Chem. Solids 68, 1522–1526 (2007). https://doi.org/10.1016/j.jpcs.2007.03.029

    Article  CAS  Google Scholar 

  2. A. Singh, K. Shamim, S. Sharma, R. Rai, P. Kumari, Enhanced electrical and magnetic properties in BZT/NFO multiferroic composites derived by MARH. J. Mater. Sci.-Mater. El. 29, 18221–18230 (2018). https://doi.org/10.1007/s10854-018-9935-x

    Article  CAS  Google Scholar 

  3. Y. Wang, J. Hu, Y. Lin, C.W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61–68 (2010). https://doi.org/10.1038/asiamat.2010.32

    Article  Google Scholar 

  4. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018). https://doi.org/10.1039/c8ra02306a

    Article  CAS  Google Scholar 

  5. N.M. Shinde, P.V. Shinde, R.S. Mane, K.H. Kim, Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: a review. Renew. Sust. Energ. Rev. 135, 110084 (2021)

    Article  CAS  Google Scholar 

  6. J. vanden Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4. J. Mater. Sci. 13, 1538–1548 (1978)

    Article  Google Scholar 

  7. S.M. Mane, P.M. Tirmali, D.J. Salunkhe, P.B. Joshi, C.B. Kolekar, S.B. Kulkarni, Synthesis, structural and dielectric characterization of lead free x[(Ba0.7Ca0.3)TiO3]–(1–x)[Ba(Zr02Ti08)O3] composite. J. Mater. Sci.-Mater. El. 27, 7204–7210 (2016). https://doi.org/10.1007/s10854-016-4685-0

    Article  CAS  Google Scholar 

  8. P. Jarupoom, P. Jaita, R. Sanjoom, C. Randorn, G. Rujijanagul, High magnetic and ferroelectric properties of BZT-LSM multiferroic composites at room temperature. Ceram. Int. 44, 8768–8776 (2018). https://doi.org/10.1016/j.ceramint.2018.02.006

    Article  CAS  Google Scholar 

  9. M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, Enhanced dielectric and ferroelectric properties of lead-free Ba(Zr0.15Ti0.85)O3 ceramics compacted by cold isostatic pressing. J. Alloy. Compd. 611, 43–49 (2014). https://doi.org/10.1016/j.jallcom.2014.05.098

    Article  CAS  Google Scholar 

  10. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J. Appl. Phys. 92, 2655–2657 (2002). https://doi.org/10.1063/1.1495069

    Article  CAS  Google Scholar 

  11. R.S. Devan, B.K. Chougule, Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101, 014109 (2007). https://doi.org/10.1063/1.2404773

    Article  CAS  Google Scholar 

  12. S.M. Mane, A.M. Teli, N.T. Tayade, K.J. Pawar, S.B. Kulkarni, J. Choi, J.W. Yoo, J.C. Shin, Correlative structural refinement-magnetic tunability, and enhanced magnetostriction in low-temperature, microwave-annealed, Ni-substituted CoFe2O4 nanoparticles. J. Alloy. Compd. 895, 162627 (2022). https://doi.org/10.1016/j.jallcom.2021.162627

    Article  CAS  Google Scholar 

  13. J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85 Ca0.15)(Zr0.1Ti0.9) O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012). https://doi.org/10.1111/j.1551-2916.2012.05146.x

    Article  CAS  Google Scholar 

  14. G. Srinivasan, S. Priya, N.X. Sun, Composite magnetoelctrics (Woodhead publishing, Cambridge, 2015)

    Google Scholar 

  15. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494, 175–189 (2010). https://doi.org/10.1016/j.jallcom.2010.01.068

    Article  CAS  Google Scholar 

  16. M.M. Sutar, A.N. Tarale, S.R. Jigajeni, S.B. Kulkarni, V.R. Reddy, P.B. Joshi, Magnetoelectric and magnetodielectric effect in Ba1-xSrxTiO3 and Co09Ni0.1Fe2-xMnxO4 composites. Solid State Sci. 14, 1064–1070 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.05.016

    Article  CAS  Google Scholar 

  17. L. Xu, Y. Xu, Effect of Zr4+ content on crystal structure, micromorphology, ferroelectric and dielectric properties of Ba(ZrxTi1−x)O3 ceramics. J. Mater. Sci.-Mater. El. 31, 5492–5498 (2020). https://doi.org/10.1007/s10854-020-03114-2

    Article  CAS  Google Scholar 

  18. M.P.K. Sahoo, Z. Yajun, J. Wang, R.N.P. Choudhary, Composition control of magnetoelectric relaxor behavior in multiferroic BaZr0.4Ti0.6O3/CoFe2O4 composites. J. Alloy. Compd. 657, 12–20 (2016). https://doi.org/10.1016/j.jallcom.2015.10.040

    Article  CAS  Google Scholar 

  19. M. Deluca, C.A. Vasilescu, A.C. Ianculescu et al., Investigation of the composition-dependent properties of BaTi1−xZrxO3 ceramics prepared by the modified Pechini method. J. Euro. Ceram. Soci. 32, 3551–3566 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.05.007

    Article  CAS  Google Scholar 

  20. Y. Zhang, L. Wu, J. Zhao, W. Yu, A facile precursor-separated method to synthesize nano-crystalline LiFePO4/C cathode materials. J. Elctroanal. Chem. 719, 1–6 (2014). https://doi.org/10.1016/j.jelechem.2014.02.003

    Article  CAS  Google Scholar 

  21. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  22. N. Doebelin, R. Kleeberg, Profex: a graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48, 1573–1580 (2015). https://doi.org/10.1107/S1600576715014685

    Article  CAS  Google Scholar 

  23. B. Kariuki, International Union of Crystallography extended software/ methods development issue, 20 (1998) n.d, http://www.iucr.org/iucr-top/comm/cpd/Newsletters/.

  24. E.K. Al-Shakarchi, N.B. Mahmood, Three techniques used to produce BaTiO3 fine powder. J. Mod. Phys. 02, 1420–1428 (2011). https://doi.org/10.4236/jmp.2011.211175

    Article  CAS  Google Scholar 

  25. G. H. Kwei, A. C. Lawson, S. J. L. Billinge, S.-W. Cheong, Structures of the ferroelectric phases of barium titanate, J. Phys. Chem.-US., 97, 2368–2377 (1993). https://pubs.acs.org/sharingguidelines.

  26. C.J. Xiao, C.Q. Jin, X.H. Wang, Crystal structure of dense nanocrystalline BaTiO3 ceramics. Mater. Chem. Phys. 111, 209–212 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.020

    Article  CAS  Google Scholar 

  27. A. Boultif, D. Louër, Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724–731 (2004). https://doi.org/10.1107/S0021889804014876

    Article  CAS  Google Scholar 

  28. D. Louër, A. Boultif, Powder pattern indexing and the dichotomy algorithm. Z. Kristallogr. Suppl. 26, 191–196 (2007)

    Article  Google Scholar 

  29. L.S. Cavalcante, M. Anicete-Santos, J.C. Sczancoski, L.G.P. Simões, M.R.M.C. Santos, J.A. Varela, P.S. Pizani, E. Longo, Intense and broad photoluminescence at room temperature in structurally disordered Ba[Zr0.25Ti0.75]O3 powders: an experimental/theoretical correlation. J. Phys. Chem. Solids 69, 1782–1789 (2008). https://doi.org/10.1016/j.jpcs.2007.12.022

    Article  CAS  Google Scholar 

  30. O.A. Maslova, Y.I. Yuzyuk, N. Ortega, A. Kumar, S.A. Barannikova, R. Katiyar, Phase transition peculiarities in BaTiO3-based perovskite superlattices. AIP Conf. Proc. 2051, 020190-1–020190-4 (2018). https://doi.org/10.1063/1.5083433

    Article  CAS  Google Scholar 

  31. O.A. Maslova, Y.I. Yuzyuk, S.A. Barannikova, A Comparative Analysis of asymmetric (BaTiO3) (1–x)Λ/(BaZrO3) superlattices via x-ray diffraction and Raman spectroscopy. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/6345691

    Article  Google Scholar 

  32. V. Buscaglia, S. Tripathi, V. Petkov, M. Dapiaggi, M. Deluca, A. Gajovic, Y. Ren, Average and local atomic-scale structure in BaZrxTi1-xO3 (x = 0.10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy. J. Phys. Condens. Matter 26, 065901 (2014). https://doi.org/10.1088/0953-8984/26/6/065901

    Article  CAS  Google Scholar 

  33. L.H. Robins, D.L. Kaiser, L.D. Rotter, P.K. Schenck, Investigation of the structure of barium titanate thin films by Raman spectroscopy. J. Appl. Phys. 76, 7487 (1994). https://doi.org/10.1063/1.357978

    Article  CAS  Google Scholar 

  34. J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B 69, 092104 (2004). https://doi.org/10.1103/PhysRevB.69.092104

    Article  CAS  Google Scholar 

  35. A. Kumar, M.A. Dar, P. Sharma, D. Varshney, Structural and Raman scattering study of Ni-doped CoFe2O4. AIP Conf. Proc. 1591, 1148–1150 (2014). https://doi.org/10.1063/1.4872884

    Article  CAS  Google Scholar 

  36. R. Pandey, L.K. Pradhan, S. Kumar, M. Kar, Crystal structure, magnetic and dielectric properties of (1–x) BiFe0.80Ti0.20O3–(x)Co0.5Ni0.5Fe2O4 multiferroic composites. J. Alloy. Compd. 762, 668–677 (2018). https://doi.org/10.1016/j.jallcom.2018.05.198

    Article  CAS  Google Scholar 

  37. R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3-CoFe1.8Zn02O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014). https://doi.org/10.1016/j.ceramint.2014.01.115

    Article  CAS  Google Scholar 

  38. S.A. Lokare, D.R. Patil, R.S. Devan, S.S. Chougule, Y.D. Kolekar, B.K. Chougule, Electrical conduction, dielectric behavior and magnetoelectric effect in (x)BaTiO3+ (1–x) Ni0.94Co0.01Mn0.05Fe2O4 ME composites. Mater. Res. Bull. 43, 326–332 (2008). https://doi.org/10.1016/j.materresbull.2007.03.004

    Article  CAS  Google Scholar 

  39. D.R. Patil, A.D. Sheikh, C.A. Watve, B.K. Chougule, Magnetoelectric properties of ME particulate composites. J. Mater. Sci. 43, 2708–2712 (2008). https://doi.org/10.1007/s10853-008-2456-x

    Article  CAS  Google Scholar 

  40. A. Sharma, R.K. Kotnala, N.S. Negi, Observation of multiferroic properties and magnetoelectric effect in (x)CoFe2O4-(1–x)Pb0.7Ca0.3TiO3 composites. J. Alloy. Compd. 582, 628–634 (2014). https://doi.org/10.1016/j.jallcom.2013.08.087

    Article  CAS  Google Scholar 

  41. X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(Zry, Ti1-y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004). https://doi.org/10.1016/j.actamat.2004.07.028

    Article  CAS  Google Scholar 

  42. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti09O3 composite ceramics. Compos. Part B-Eng. 166, 204–212 (2019). https://doi.org/10.1016/j.compositesb.2018.12.010

    Article  CAS  Google Scholar 

  43. D.D. Dung, N.H. Tuan, N.D. Quan, N.Q. Huy, C.T.T. Trang, N.H. Linh, N.H. Thoan, N.N. Trung, N.T. Trang, L.H. Bac, Biferroic properties in Co-doped 0.2BaZrO3–0.8BaTiO3 materials. Res. Phys. 19, 103535 (2020). https://doi.org/10.1016/j.rinp.2020.103535

    Article  Google Scholar 

  44. B.G. Ghule, N.M. Shinde, S.D. Raut, S.K. Gore, S.F. Shaikh, S.U. Ekar, M. Ubaidullah, J.J. Pak, R.S. Mane, Self-assembled α-Fe2O3-GO nanocomposites: studies on physical, magnetic and ammonia sensing properties. Mater. Chem. Phys. 278, 125617 (2022). https://doi.org/10.1016/j.matchemphys.2021.125617

    Article  CAS  Google Scholar 

  45. J. Rani, K.L. Yadav, S. Prakash, Dielectric and magnetic properties of xCoFe2O4-(1 - X)[0.5Ba(Zr0.2Ti0.8)O3–05(Ba0.7Ca0.3)TiO3] composites. Mater. Res. Bull. 60, 367–375 (2014). https://doi.org/10.1016/j.materresbull.2014.09.013

    Article  CAS  Google Scholar 

  46. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2177543

    Article  Google Scholar 

  47. S.M. Salunkhe, S.R. Jigajeni, M.M. Sutar, A.N. Tarale, P.B. Joshi, Magnetoelectric and magnetodielectric effect in CFMO-PBT nanocomposites. J. Phys. Chem. Solids 74, 388–394 (2013). https://doi.org/10.1016/j.jpcs.2012.10.003

    Article  CAS  Google Scholar 

  48. P. Pan, J. Tao, F. Ma, N. Zhang, Magnetodielectric effect in (1–x) (Ba0.88Ca0.12)(Ti0.88Zr0.12)O3− xCoFe2O4. J. Magn. Magn. Mater. 453, 91–95 (2018). https://doi.org/10.1016/j.jmmm.2017.12.107

    Article  CAS  Google Scholar 

  49. R. Rakhikrishna, J. Isaac, J. Philip, Magneto-electric coupling in multiferroic nanocomposites of the type x (Na0.5K0.5)094Li0.06NbO3- (1–x)CoFe2O4: role of ferrite phase. Ceram. Int. 43, 664–671 (2017). https://doi.org/10.1016/j.ceramint.2016.09.212

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (Ministry of Trade, Industry and Energy-MOTIE) (P0012770) and (N000OOOO). This study was supported by the National Research Foundation of Korea (NRF-2020R1A2C1015206).

Author information

Authors and Affiliations

Authors

Contributions

SMM: Conceptualization, experimental, data creation, and analysis, Investigation, Writing—original draft, revision, and editing, AMT: Data curation, Formal analysis, Resources. SAB: Formal analysis, Resources. NTT: Data curation, Resources, Analysis, Software, Writing—original draft, revision. ANT: Formal analysis, Resources, Visualization. PMT: Data curation, Formal analysis, Visualization. SBK: Conceptualization, Formal analysis, Resources, Writing—original draft, Validation. JCS: Investigation, Project administration, supervision, Writing—original draft. JL: Formal analysis, Supervision, Writing—original draft, Validation, Visualization, Project administration.

Corresponding authors

Correspondence to Sagar M. Mane, Shrinivas B. Kulkarni, Jae Cheol Shin or Jaewoong Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, S.M., Teli, A.M., Beknalkar, S.A. et al. Room-temperature multiferroic (magnetoelectric–magnetodielectric) coupling properties of hybrid microwave-sintered (1 − x)BaZr0.25Ti0.75O3 − xCo0.9Ni0.1Fe2O4 lead-free electromagnetic composites. J Mater Sci: Mater Electron 34, 1863 (2023). https://doi.org/10.1007/s10854-023-11236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11236-6

Navigation