Skip to main content

Advertisement

Log in

Photoresponse in the ultraviolet–visible–NIR range of octahedral MnCo2O4 microparticles synthesized by the solution method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photodetection properties of MnCo2O4 were investigated in the ultraviolet (UV-A), visible, and near-infrared (NIR) range. The oxide was synthesized from manganese and cobalt chlorides using a nonaqueous solution method. Octahedral microcrystals with sizes between 1.8 and 6 µm were obtained at 700 °C, in air. The optical bandgap energy was calculated by the Tauc method giving 1.71 eV. Photocurrent results obtained with UV-A light (λ = 365 nm) show a fast response, with current changes from 6 to 120 µA for optical irradiances (Ee) between 10 and 100 mW/cm2. Polarization curves show a linear increase of photocurrent with voltage, indicating ohmic behavior. The effect of wavelength on the photocurrent was investigated using violet light, sunlight, and near-infrared radiation (NIR). The graphs revealed that, regardless of wavelength radiation, the photocurrent increases exponentially with Ee, because of electron–hole pair formation and radiation absorption. The general results suggest a promising use in the detection of UV–visible, but it has limitations for NIR radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The experimental data will be available upon request.

References

  1. J. Gomez, E.E. Kalu, High-performance binder-free Co-Mn composite oxide supercapacitor electrode. J. Power Sources 230, 218–224 (2013)

    Article  CAS  Google Scholar 

  2. H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors. Ceram. Int. 42, 2416–2424 (2016)

    Article  CAS  Google Scholar 

  3. M. Haripriya, A.M. Ashok, S. Hussain, R. Sivasubramanian, Nanostructured MnCo2O4 as a high-performance electrode for supercapacitor application. Ionics 27, 325–337 (2021)

    Article  CAS  Google Scholar 

  4. P.M. Anjana, S.R. Sarath Kumar, R.B. Rakhi, MnCo2O4 nanoneedles self-organized microstructures for supercapacitors. Mater. Today Commun. 28, 102720 (2021)

    Article  CAS  Google Scholar 

  5. A.K. Mondal, D. Su, S. Chen, A. Ung, H.-S. Kim, G. Wang, Mesoporous MnCo2O4 with a flake-like structure as advanced electrode materials for lithium-ion batteries and supercapacitors. Chem. Eur. J. 21, 1526–1532 (2015)

    Article  CAS  Google Scholar 

  6. Y. Jin, L. Wang, Q. Jiang, X. Du, C. Ji, X. He, Mesoporous MnCo2O4 microflower constructed by sheets for lithium ion batteries. Mater. Lett. 177, 85–88 (2016)

    Article  CAS  Google Scholar 

  7. S. Zhou, X. Luo, L. Chen, C. Xu, D. Yan, MnCo2O4 nanospheres for improved lithium storage performance. Ceram. Int. 44, 17858–17863 (2018)

    Article  CAS  Google Scholar 

  8. D.S. Baji, H.S. Jadhav, S.V. Nair, A. Kumar-Rai, Porous MnCo2O4 as superior anode material over MnCo2O4 nanoparticles for rechargeable lithium ion batteries. J. Solid State Chem. 262, 191–198 (2018)

    Article  CAS  Google Scholar 

  9. Y. Zhao, T.-S. Oh, Y. Li, J.M. Vohs, R.J. Gorte, Fabrication of MnCo2O4-YSZ composite cathodes for solid oxide fuel cells by electrodeposition. J. Electrochem. Soc. 163, F863–F866 (2016)

    Article  CAS  Google Scholar 

  10. S.-I. Lee, J. Hong, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, K.J. Yoon, Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J. Electrochem. Soc. 161, F1389–F1394 (2014)

    Article  CAS  Google Scholar 

  11. S. Ma, L. Sun, L. Cong, X. Gao, C. Yao, X. Guo, L. Tai, P. Mei, Y. Zeng, H. Xie, R. Wang, Multiporous MnCo2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li-O2 batteries. J. Phys. Chem. C 117, 25890–32589 (2013)

    Article  CAS  Google Scholar 

  12. X. Cao, W. Yan, C. Jin, J. Tian, K. Ke, R. Yang, Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochim. Acta 180, 788–794 (2015)

    Article  CAS  Google Scholar 

  13. P.W. Menezes, A. Indra, N.R. Sahraie, A. Bergmann, P. Strasser, M. Driess, Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. Chemsuschem 8, 164–171 (2015)

    Article  CAS  Google Scholar 

  14. W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A.-P. Honkanen, S. Huotari, M. Yu, B. Geng, Mass-production of mesoporous MnCo2O4 spinels with manganese (IV) and cobalt (II) rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem. Int. Ed. 56, 14977–14981 (2017)

    Article  CAS  Google Scholar 

  15. S. Wang, Y. Hou, X. Wang, Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 7, 4327–4335 (2015)

    Article  CAS  Google Scholar 

  16. L. Yao, L. Zhang, Y. Liu, L. Tian, J. Xu, T. Liu, D. Liu, C. Wang, MnCo2O4 and CoMn2O4 octahedral nanocrystals synthesized via a one-step co-precipitation process and their catalytic properties in benzyl alcohol oxidation. CrystEngComm 18, 887–8897 (2016)

    Article  Google Scholar 

  17. J. Zhu, Q. Gao, Mesoporous MCo2O4 (M = Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Micropor. Mesopor. Mater. 124, 144–152 (2009)

    Article  CAS  Google Scholar 

  18. Z.-L. Wu, C.-K. Li, F.-W. Zhu, S. Liao, J.-G. Yu, H. Yang, X.-Q. Chen, Binary cobalt and manganese oxides: amperometric sensing of hydrogen peroxide. Sens. Actuators B 253, 949–957 (2017)

    Article  CAS  Google Scholar 

  19. Y. Zhang, L. Luo, Z. Zhang, Y. Ding, S. Liu, D. Deng, H. Zhao, Y. Chen, Synthesis of MnCo2O4 nanofibers by electrospinning and calcination: application for a highly sensitive non-enzymatic glucose sensor. J. Mater. Chem. B 2, 529–535 (2014)

    Article  CAS  Google Scholar 

  20. S. Vadivel, G. Balaji, S. Rathinavel, High performance ethanol and acetone gas sensor based nanocrystalline MnCo2O4 using clad-modified fiber optic gas sensor. Opt. Mater. 85, 267–274 (2018)

    Article  CAS  Google Scholar 

  21. S. Gateva (ed.), Photodetectors (Intech Open, Rijeka, 2012)

  22. L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors 13, 10482–10518 (2013)

    Article  CAS  Google Scholar 

  23. E. Monroy, F. Omnés, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33–R51 (2003)

    Article  CAS  Google Scholar 

  24. E. Muñoz, E. Monroy, J.L. Pau, F. Calle, F. Omnés, P. Gibart, III nitrides and UV detection. J. Phys. Condens. Matter 13, 7115–7137 (2001)

    Article  Google Scholar 

  25. X. Zhang, D. Wu, H. Geng, Heterojunctions based on II-VI compound semiconductor one-dimensional nanostructures and their optoelectronic applications. Crystals 7, 307 (2017)

    Article  Google Scholar 

  26. L. Hu, L. Wu, M. Liao, X. Fang, High-performance NiCo2O4 nanofilm photodetectors fabricated by an interfacial self-assembly strategy. Adv. Mater. 23, 1988–1992 (2011)

    Article  CAS  Google Scholar 

  27. C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.-H. Park, J. Park, J.-Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-Doped CoFe2O4, nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113, 7085–7090 (2009)

    Article  CAS  Google Scholar 

  28. G. Salek, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, A simple preparation process of pure Mn3xCoxO4 (x = 1, 1.5 and 2) desert rose-like nanoparticles and their optical properties. Int. J. Chem. 4, 44–53 (2012)

    Article  CAS  Google Scholar 

  29. T.L. Le, S. Guillemet-Fritsch, P. Dufour, C. Tenailleau, Microstructural and optical properties of spinel oxide MxCo2−xMnO4 (M = Ni, Zn or Cu; 0 < x < 1) thin films prepared by inorganic polycondensation and dip-coating methods. Thin Solid Films 612, 14–21 (2016)

    Article  CAS  Google Scholar 

  30. J. Zheng, L. Zhang, Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B: Environ. 237, 1–8 (2018)

    Article  CAS  Google Scholar 

  31. V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. 48, 117–123 (1989)

    Article  Google Scholar 

  32. J.F. Moulder, W.F. Stickle, P.E. Sobol et al., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp, Eden Prairie, 1992)

    Google Scholar 

  33. M. Oku, K. Hirokawa, X-ray photoelectron spectroscopy of manganese-oxygen systems. J. Electron Spectrosc. 7, 465–473 (1975)

    Article  CAS  Google Scholar 

  34. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, RSt.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  35. B. Saravanakumar, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, MnCo2O4 nanosphere synthesis for electrochemical applications. Mater. Sci. Energy Technol. 2, 130–138 (2019)

    Google Scholar 

  36. O.V. Netskina, A.A. Pochtar, O.V. Komova, V.I. Simagina, Solid-state NaBH4 composites as hydrogen generation material: effect of thermal treatment of a catalyst precursor on the hydrogen generation rate. Catalysts 10, 201 (2020)

    Article  CAS  Google Scholar 

  37. R.R. Shettigar, N.M. Misra, K. Patel, Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids. J. Petrol. Explor. Prod. Technol. 8, 597–606 (2018)

    Article  CAS  Google Scholar 

  38. B. Manoj, A.M. Raj, G.C. Thomas, Tailoring of low-grade coal to fluorescent nanocarbon structures and their potential as a glucose sensor. Sci. Rep. 8, 13891 (2018)

    Article  Google Scholar 

  39. M. Shanmugavadivel, V.V. Dhayabaran, M. Subramanian, Fabrication of high energy and high power density supercapacitor based on MnCo2O4 nanomaterial. J. Phys. Chem. Solids 133, 15–20 (2019)

    Article  CAS  Google Scholar 

  40. M. Alhaddad, R.M. Mohamed, M.H.H. Mahmoud, Promoting visible light generation of hydrogen using a sol–gel-prepared MnCo2O4@g-C3N4 p-n heterojunction photocatalyst. ACS Omega 6, 8717–8725 (2021)

    Article  CAS  Google Scholar 

  41. R.H. Bube, Electrons in Solids. An Introductory Survey, 3rd edn. (Academic Press, San Diego, 2008), pp.131–213

    Google Scholar 

  42. P.A. Cox, Transition Metal Oxides. An Introduction to Their Electronic Structure and Properties (Clarendon Press, Oxford, 1992), pp.157–177

    Google Scholar 

  43. V.E. Henrich, P.A. Cox, Fundamentals of gas-surface interactions on metal oxides. Appl. Surf. Sci. 72, 277–284 (1993)

    Article  CAS  Google Scholar 

  44. Y. Cao, M.J. Gadre, A.T. Ngo, S.B. Adler, D.D. Morgan, Factors controlling surface oxygen exchange in oxides. Nat. Commun. 10, 1–15 (2019)

    Article  Google Scholar 

  45. F. Gunkel, D.V. Christensen, Y.Z. Chen, N. Pryds, Oxygen vacancies: the (in)visible friend of oxide electronics. Appl. Phys. Lett. 116, 120505 (2020)

    Article  CAS  Google Scholar 

  46. R.H. Bube, Photoconductivity of solids (Wiley, New York, 1960), pp.194–196

    Google Scholar 

  47. M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys. 79, 7433–7473 (1996)

    Article  CAS  Google Scholar 

  48. E. Monroy, F. Ommes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33–R51 (2003)

    Article  CAS  Google Scholar 

  49. B.D. Boruah, Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv. 1, 2059 (2019)

    Article  Google Scholar 

  50. Y. Li, W. Zheng, F. Huang, All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX 1, 15 (2020)

    Article  Google Scholar 

  51. R. Soref, Mid-infrared photonics in silicon and germanium. Nat. Photonics 4, 495–497 (2010)

    Article  CAS  Google Scholar 

  52. D. Thomson, A. Zilkie, J.E. Bowers, T. Komljenovic, G.T. Reed, L. Vivien, D. Marris-Morini et al., Roadmap on silicon photonics. J. Opt. 18, 073003 (2016)

    Article  Google Scholar 

  53. J. Song, S. Yuan, C. Cui, Y. Wang, Z. Li, A.X. Wang, Ch. Zeng, J. Xia, High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics 10, 1081–1087 (2021)

    Article  CAS  Google Scholar 

  54. J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

The author thanks the General Academic Coordination of the Universidad de Guadalajara (U de G), México for financial support, through the PRO-SNI 2022 program. The author also appreciates the assistance of María de Jesús Palacios Sánchez and Dr. Eulogio Orozco from the Laboratory of Physical Chemistry (U de G) for FTIR analyses. Characterization of samples by XPS was performed thanks to the Laboratory of X-ray Photoelectron Spectroscopy (U de G), through the CONACYT project: “Apoyo al Fortalecimiento y Desarrollo de Infraestructura Científica y Tecnológica” with No. 270662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Michel.

Ethics declarations

Conflict of interest

The author declares not to have conflicts of interest about the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, C.R. Photoresponse in the ultraviolet–visible–NIR range of octahedral MnCo2O4 microparticles synthesized by the solution method. J Mater Sci: Mater Electron 34, 1779 (2023). https://doi.org/10.1007/s10854-023-11215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11215-x

Navigation