Skip to main content
Log in

Study on the preparation and properties of (BixGa1-x)2O3 alloy semiconductor film deposited by radio frequency co-sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Introducing other elements into gallium oxide materials to modify their properties is a hot topic today. This paper attempts to introduce Bi element to prepare (BixGa1-x)2O3 alloy semiconductor thin film by radio frequency co-sputtering, so as to achieve precise and effective tuning of its band gap. The sputtering power of Ga2O3 target remains constant at 80 W. The content of Bi element in the material is adjusted by varying the sputtering power of the Bi2O3 target. Samples with different Bi doping concentrations were obtained after annealing at 800 °C for 2 h. Fortunately, (BixGa1-x)2O3 semiconductor alloy films were successfully prepared by radio frequency co-sputtering, and the optical energy gap could be adjusted approximately linearly in the range of 5.14 to 5.27 eV by varying the Bi content. X-ray diffraction and scanning electron microscope results show that a phase transition occurs in the material when the sputtering power of Bi2O3 is 40 W. The results of Urbach energy and film transmittance indicate that moderate Bi doping can reduce the disorder of the material structure and improve the transmittance of the film. However, excessive Bi doping introduces more defects, increasing the scattering and absorption of the defects, ultimately leading to a reduction in film transmittance. These findings have propelled research in the field of gallium oxide doping and its band gap modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. X.H. Chen, F.F. Ren, S.L. Gu, J.D. Ye, Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res. 4, 381 (2019). https://doi.org/10.1364/PRJ.7.000381

    Article  Google Scholar 

  2. F. Massabuau, D. Nicol, F. Adams, J. Jarman, J. Roberts, A. Kovács, P. Chalker, R. Oliver, Study of Ti contacts to corundum α-Ga2O3. J. Phys. D Appl. Phys. 54, 384001 (2021). https://doi.org/10.1088/1361-6463/ac0d28

    Article  CAS  Google Scholar 

  3. M.H. Lee, T.S. Chou, S.B. Anooz, Z. Galazka, A. Popp, R.L. Peterson, Exploiting the nanostructural anisotropy of β-Ga2O3 to demonstrate giant improvement in titanium/gold ohmic contacts. ACS Nano 8, 11988 (2022). https://doi.org/10.1021/acsnano.2c01957

    Article  CAS  Google Scholar 

  4. L.E. Ratcliff, T. Oshima, F. Nippert, B.M. Janzen, E. Kluth, R. Goldhahn, M. Feneberg, P. Mazzolini, O. Bierwagen, C. Wouters, M. Nofal, M. Albrecht, J.E.N. Swallow, L.A.H. Jones, P.K. Thakur, T.L. Lee, C. Kalha, C. Schluete, T.D. Veal, J.B. Varley, M.R. Wagner, A. Regoutz, Tackling disorder in γ-Ga2O3. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204217

    Article  Google Scholar 

  5. Z.Y. Fei, Z.M. Chen, W.Q. Chen, S.J. Chen, Z.S. Wu, X. Lu, G. Wang, J. Liang, Y.L. Pei, ε-Ga2O3 thin films grown by metal-organic chemical vapor deposition and its application as solar-blind photodetectors. J. Alloy. Compd. 925, 166632 (2022). https://doi.org/10.1016/j.jallcom.2022.166632

    Article  CAS  Google Scholar 

  6. Y.T. Zhong, Y.L. Hu, H. Mo, Z.R. Wu, X. Fu, L.Q. Zhou, H.Y. Liu, L. Li, X.G. Liu, Facilitation of PdPb nanoalloy anchored on rGO/MOF-derived δ-Ga2O3 nanorod for electrocatalytic oxidation of methanol, ethanol and ethylene glycol. Electrochim. Acta 408, 139935 (2022). https://doi.org/10.1016/j.electacta.2022.139935

    Article  CAS  Google Scholar 

  7. Y.M. Zhu, D. Zhang, W. Zheng, F. Huang, Multistep thermodynamics yielding deep ultraviolet transparent conductive Ga2O3 films. J. Phys. Chem. C 30, 16722 (2020). https://doi.org/10.1021/acs.jpcc.0c05496

    Article  CAS  Google Scholar 

  8. J.Y. Lai, M.N. Hasan, E. Swinnich, Z. Tang, S.H. Shin, M. Kim, P.H. Zhang, J.H. Seo, Flexible crystalline β-Ga2O3 solar-blind photodetectors. J. Phys. Chem. C 42, 14732 (2020). https://doi.org/10.1039/d0tc03740k

    Article  CAS  Google Scholar 

  9. H. Dong, H.W. Xue, Q.M. He, Y. Qin, G.Z. Jian, S.B. Long, M. Liu, Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semicond. (2019). https://doi.org/10.1088/1674-4926/40/1/011802

    Article  Google Scholar 

  10. M.M. Xu, W.Y. Ge, X.M. Zhang, P.F. Zhang, Y.X. Li, Novel one-dimensional Ga2O3:Cr3+ nanofibers with broadband emission for near infrared LED sources. J. Lumin. 246, 118831 (2022). https://doi.org/10.1016/j.jlumin.2022.118831

    Article  CAS  Google Scholar 

  11. N. Vorobyeva, M. Rumyantseva, V. Platonov, D. Filatova, A. Chizhov, A. Marikutsa, I. Bozhev, A. Gaskov, Ga2O3(Sn) oxides for high-temperature gas sensors. Nanomaterials-Basel 11, 2938 (2021). https://doi.org/10.3390/nano11112938

    Article  CAS  Google Scholar 

  12. W.J. Li, J.X. Wan, Z.X. Tu, H. Li, H. Wu, C. Liu, Optimizing endurance performance of Ga2O3 random resistive access memories by altering oxygen vacancy content. Ceram. Int. 3, 3185 (2022). https://doi.org/10.1016/j.ceramint.2021.10.091

    Article  CAS  Google Scholar 

  13. G.F. Deng, Y.F. Huang, Z.W. Chen, C.G. Pan, K. Saito, T. Tanaka, Q.X. Guo, Yellow emission from vertically integrated Ga2O3 doped with Er and Eu electroluminescent film. J. Lumin. 235, 118051 (2021). https://doi.org/10.1016/j.jlumin.2021.118051

    Article  CAS  Google Scholar 

  14. Y.F. Huang, K. Saito, T. Tanaka, Q.X. Guo, Realization of red electroluminescence from Ga2O3: Eu/Si based light-emitting diodes. Superlattice. Microst. 150, 106814 (2021). https://doi.org/10.1016/j.spmi.2021.106814

    Article  CAS  Google Scholar 

  15. F.Q. Du, D.G. Yang, Y. Sun, Y. Jiao, F. Teng, H.B. Fan, Electrospun Zn-doped Ga2O3 nanofibers and their application in photodegrading rhodamine B dye. Ceram. Int. 4, 4963 (2021). https://doi.org/10.1016/j.ceramint.2020.10.072

    Article  CAS  Google Scholar 

  16. P.R. Jubu, F.K. Yam, K.T. Low, Feasibility study on synthesis of gallium oxide nanostructures on glass substrate by chemical vapor deposition. Thin Solid Films 710, 138257 (2020). https://doi.org/10.1016/j.tsf.2020.138257

    Article  CAS  Google Scholar 

  17. S. Bhandari, M.E. Zvanut, Fe-related optical transitions in floating zone and czochralski grown β-Ga2O3 crystals. J. Appl. Phys. 130, 165701 (2021). https://doi.org/10.1063/5.0067217

    Article  CAS  Google Scholar 

  18. K.N. Heinselman, D. Haven, A. Zakutayev, S.B. Reese, Projected cost of gallium oxide wafers from edge-defined film-fed crystal growth. Cryst. Growth Des. 8, 4854 (2022). https://doi.org/10.1021/acs.cgd.2c00340

    Article  CAS  Google Scholar 

  19. J.Y. Yue, X.Q. Ji, X.H. Qi, S. Li, Z.Y. Yan, Z. Liu, P.G. Li, Z.P. Wu, Y.F. Guo, W.H. Tang, Low MOCVD growth temperature controlled phase transition of Ga2O3 films for ultraviolet sensing. Vacuum 203, 111270 (2022). https://doi.org/10.1016/j.vacuum.2022.111270

    Article  CAS  Google Scholar 

  20. G. Joshi, Y.S. Chauhan, A. Verma, Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J. Alloy. Compd. 883, 160799 (2021). https://doi.org/10.1016/j.jallcom.2021.160799

    Article  CAS  Google Scholar 

  21. N. Zhang, Y.S. Wang, Z.H. Chen, B. Zhou, J. Gao, Y.X. Wu, Y. Ma, H.J. Hei, S.W. Yu, Fabrication and properties of N-doped top layer of Ga2O3 films by magnetron sputtering. Appl. Surf. Sci. 604, 154666 (2022). https://doi.org/10.1016/j.apsusc.2022.154666

    Article  CAS  Google Scholar 

  22. M. Kim, B.H. Kwon, C.W. Joo, M.S. Cho, H. Jang, Y.J. Kim, H. Cho, D.Y. Jeon, E.N. Cho, Y.S. Jung, Metal oxide charge transfer complex for effective energy band tailoring in multilayer optoelectronics. Nat. Commun. 1, 75 (2022). https://doi.org/10.1038/s41467-021-27652-3

    Article  CAS  Google Scholar 

  23. Y.Y. Ou, W.J. Zhou, F.K. Ma, C.M. Liul, R.F. Zhou, F. Su, Y. Huang, P. Dorenbos, H.B. Liang, Luminescence tuning of Ce3+, Pr3+ activated (Y, Gd)AGG system by band gap engineering and energy transfer. J. Rare Earth. 5, 514 (2020). https://doi.org/10.1016/j.jre.2020.01.001

    Article  CAS  Google Scholar 

  24. D.W. Ma, Investigations on Zn1-xCdxO alloy semiconductor films with tunable band-gaps (Zhejiang University, Zhejiang, 2003), p.17

    Google Scholar 

  25. H. Peelaers, J.B. Varley, J.S. Speck, C.G.V. Walle, Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 112, 242101 (2018). https://doi.org/10.1063/1.5036991

    Article  CAS  Google Scholar 

  26. J.E.N. Swallow, R.G. Palgrave, P.A.E. Murgatroyd, A. Regoutz, M. Lorenz, A. Hassa, M. Grundmann, H. Wenckstern, J.B. Varley, T.D. Veal, Indium gallium oxide alloys: electronic structure, optical gap, surface space charge, and chemical trends within common-cation semiconductors. ACS Appl. Mater. Interfaces 13, 2807 (2021). https://doi.org/10.1021/acsami.0c16021

    Article  CAS  Google Scholar 

  27. X.F. Cai, F.P. Sabino, A. Janotti, S.H. Wei, Approach to achieving a p-type transparent conducting oxide: doping of bismuth-alloyed Ga2O3 with a strongly correlated band edge state. Phys. Rev. B 103, 115205 (2021). https://doi.org/10.1103/PhysRevB.103.115205

    Article  CAS  Google Scholar 

  28. Q. Zhang, J.X. Deng, R.D. Li, J.X. Luo, L. Kong, J.H. Meng, H.L. Gao, Q.Q. Yang, G.S. Wang, X.L. Wang, J.Y. Wang, Study on the structure and properties of gallium bismuth oxide alloy thin films prepared by Sol-gel method. J. Sol-Gel Sci. Techn. 103, 280 (2022). https://doi.org/10.1007/s10971-022-05784-2

    Article  CAS  Google Scholar 

  29. G. Szwachta, S. Kąc, T. Moskalewicz, Structure and thermal stability of Bi3NbO7 thin films grown by pulsed laser deposition. Surf. Coat. Tech. 302, 474 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.052

    Article  CAS  Google Scholar 

  30. C. Gadea, N. Phatharapeetranun, B. Ksapabutr, J.C. Grivel, V. Esposito, Stoichiometric control in Bi4Ti3O12 synthesis by novel hybrid solid state reaction. Materi. Lett. 221, 101 (2018). https://doi.org/10.1016/j.matlet.2018.03.130

    Article  CAS  Google Scholar 

  31. X. Meng, X.Y. Gao, B.Q. Li, Study on NiO:Zn2+ films fabricated through dc magnetron reactive sputtering: substrate temperature-dependent microstructure pattern, optical and electrical properties. Phys. Scr. 96, 075806 (2021). https://doi.org/10.1088/1402-4896/abf7fd

    Article  Google Scholar 

  32. F. Lai, M. Li, H. Wang, H. Hu, X. Wang, J. Hou, Y. Song, Y. Jiang, Optical scattering characteristic of annealed niobium oxide films. Thin Solid Films 488, 314 (2005). https://doi.org/10.1016/j.tsf.2005.04.036

    Article  CAS  Google Scholar 

  33. S. Ebrahimi, B. Yarmand, Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications. Physica B. 593, 412292 (2020). https://doi.org/10.1016/j.physb.2020.412292

    Article  CAS  Google Scholar 

  34. T. He, P. Ehrhart, P. Meuffels, Optical band gap and Urbach tail in Y-doped BaCeO3. J. Appl. Phys. 79, 3219 (1996). https://doi.org/10.1063/1.361267

    Article  CAS  Google Scholar 

  35. L. Leontie, M. Caraman, A. Visinoiu, G.I. Rusu, On the optical properties of bismuth oxide thin films prepared by pulsed laser deposition. Thin Solid Films 473, 230 (2005). https://doi.org/10.1016/j.tsf.2004.07.061

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 62204234), Beijing Nova Program (Grant No. Z211100002121079) and the Self-Funded Project of Scientific Research and Development Plan of Langfang Science and Technology Bureau (Grant No. 2022011063).

Author information

Authors and Affiliations

Authors

Contributions

XM (First Author): Conceptualization, Methodology, Investigation, Data curation, Formal analysis, Visualization, Writing-original draft, Writing-review and editing. JD (Corresponding Author): Conceptualization, Methodology, Funding acquisition, Resources, Supervision, Writing-review and editing, Project administration. RL: Conceptualization, Methodology, Writing-review and editing, Funding acquisition. AVA: Conceptualization, Writing-review and editing. XY: Conceptualization, Writing-review and editing, Funding acquisition. QZ: Conceptualization, Writing-review and editing. JL: Conceptualization, Writing-review and editing. JR: Conceptualization, Writing-review and editing. Kun Tian: Conceptualization, Writing-review and editing.

Corresponding author

Correspondence to Jinxiang Deng.

Ethics declarations

Competing interests

All authors declared that they have no any conflict of interests to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Deng, J., Li, R. et al. Study on the preparation and properties of (BixGa1-x)2O3 alloy semiconductor film deposited by radio frequency co-sputtering. J Mater Sci: Mater Electron 34, 1780 (2023). https://doi.org/10.1007/s10854-023-11214-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11214-y

Navigation