Skip to main content
Log in

Effect of pre-calcination of Bi2O3 and Sb2O3 on the densification and varistor properties of low-temperature sintered ZnO-Bi2O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study utilized a conventional solid-state reaction method to sinter Bi2O3-Sb2O3-Co3O4-Mn3O4-Nb2O5 zinc oxide varistors at low temperatures of 860–880 °C. The pyrochlore phase occurs at temperatures ranging from 700 to 900 °C, influencing densification kinetics. The liquid-phase former, Bi2O3, is consumed and reacts to form the pyrochlore secondary phase Zn2Bi3Sb3O14, which inhibits the densification at low temperatures. Bi2O3 and Sb2O3 were pre-calcined at 550 °C to reduce secondary phase \({Zn}_{2}{Bi}_{3}{Sb}_{3}{O}_{14}\) formation and Bi2O3 consumption in this study. It was observed that pre-calcination of Bi2O3 and Sb2O3 at 550 °C successfully reduced the formation of the secondary phase Zn2Bi3Sb3O14, lowered the densification temperature of the ZnO-Bi2O3 varistor and improved its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. J.L. He, Metal Oxide Varistors: From Microstructure to macro-characteristics (Wiley, New York, 2019)

    Book  Google Scholar 

  2. H.I. Hsiang, S.S. Wang, Starting powder crystal phase effects on electrical properties of TiO2-based varistor. Jpn J. Appl. Phys. 47, 4626–4629 (2008)

    Article  CAS  Google Scholar 

  3. J. Li, S. Li, F. Liu, M.A. Alim, G. Chen, The origin of varistor property of SrTiO3-based ceramics. J. Mater. Sci.  14, 483–486 (2003)

    CAS  Google Scholar 

  4. L.T. Mei, H.I. Hsiang, T.T. Fang, Effect of copper-rich secondary phase at the grain boundaries on the varistor properties of CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 91, 3735–3737 (2008)

    Article  CAS  Google Scholar 

  5. P.R. Bueno, J.A. Varela, E. Longo, ZnO and related polycrystalline compound semiconductors: an overview and review on the voltage-dependent resistance (non- ohmic) feature. J. Eur. Ceram. Soc. 28, 505–529 (2008)

    Article  CAS  Google Scholar 

  6. W.B. Su, J.F. Wang, H.C. Chen, W.X. Wang, G.Z. Zhang, C.P. Li, Nonlinear electrical behavior of the TiO2⋅WO3 varistor. J. Appl. Phys. 92, 4779–4783 (2002)

    Article  CAS  Google Scholar 

  7. T.K. Gupta, Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  8. H.I. Hsiang, C.C. Chen, C.C. Kao, Effect of ZnBi2O4 and Bi2O3 addition on the densification, microstructure, and varistor properties of ZnO varistors. Ceram. Inter. 49, 2244–2249 (2023)

    Article  CAS  Google Scholar 

  9. Y.M. Shen, H.I. Hsiang, Effects of the sodium ions addition on the varistor properties of ZnO-Co3O4-Pr6O11 ceramics. J. Mater. Sci. : Mater. Electron. 32, 28935–28941 (2021)

    CAS  Google Scholar 

  10. C.W. Nahm, B.C. Shin, Effect of sintering temperature on electrical properties and stability of Pr6O11-based ZnO varistors. J. Mater. Sci. : Mater. Electron. 13, 111–120 (2002)

    CAS  Google Scholar 

  11. J.S. Park, Y.H. Han, K.H. Choi, Effects of Y2O3 on the microstructure and electrical properties of Pr-ZnO varistors. J. Mater. Sci: Mater. Electron. 16, 215–219 (2005)

    CAS  Google Scholar 

  12. H.I. Hsiang, H.R. Tsai, C. Pithan, Effects of Sr(Co, Nb, Ta)O3 addition on the defect structures and electrical properties of ZnO-based varistors. J. Mater. Chem. C 10, 9644–9654 (2022)

    Article  CAS  Google Scholar 

  13. Y. Higashi, M. Hogiri, E. Koga, Nonlinear property of SrCoO3-doped ZnO ceramics sintered in a reducing atmosphere and multilayer ceramic varistors with base metal electrodes. J. Mat. Res. 30(15), 2300–2309 (2015)

    Article  CAS  Google Scholar 

  14. J. Kim, T. Kimura, T. Yamaguchi, Microstructure development in Sb2O3-doped ZnO. J. Mater. Sci. 24, 2581–2586 (1989)

    Article  CAS  Google Scholar 

  15. J. Ott, A. Lorenz, M. Harrer, E.A. Preissner, C. Hesse, A. Feltz, A. Whitehead, M. Schreiber, The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors. J. Electroceram. 6, 135–146 (2001)

    Article  CAS  Google Scholar 

  16. T. Senda, R.C. Bradt, Grain growth of zinc oxide during the sintering of zinc oxide—antimony oxide ceramics. J. Am. Ceram. Soc. 74, 1296–1302 (1991)

    Article  CAS  Google Scholar 

  17. E. Leite, M.A.L. Nobre, E. Longo, J.A. Varela, Microstructural development of ZnO varistor during reactive liquid phase sintering. J. Mater. Sci. 31, 5391–5398 (1996)

    Article  CAS  Google Scholar 

  18. G.C. Miles, A.R. West, Pyrochlore phases in the System ZnO–Bi2O3–Sb2O5: I. Stoichiometries and Phase Equilibria. J. Am. Ceram. Soc. 89, 1042–1046 (2005)

    Article  Google Scholar 

  19. P. Meng, X. Zhao, X. Yang, J. Wu, Q. Xie, J. He, J. Hu, J. He, Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. J. Europ Ceram. Soc. 39, 4824–4830 (2019)

    Article  CAS  Google Scholar 

  20. F. Greuter, T. Christen, J. Glatz-Reichenbach, Current flow and structural inhomogeneities in nonlinear materials. Mat. Res. Soc. Symp. Proc. 500, 235–246 (1998)

    Article  CAS  Google Scholar 

  21. M. Peiteado, J.F. Fernández, A.C. Caballero, Varistors based in the ZnO–Bi2O3 system: microstructure control and properties. J. Eur. Ceram. Soc. 27, 3867–3872 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Council, Taiwan [112-2221-E-006 -063 -MY3]. The authors gratefully acknowledge using the Core Facility Center, National Cheng Kung University, Taiwan.

Funding

National Science and Technology Council, Taiwan [112-2221-E-006 -063 -MY3].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HIH and YMS; methodology, MCL; validation, HIH, and MCL; formal analysis, MCL; investigation, MCL; resources, HIH; data curation, CCK; writing—original draft preparation, HIH; writing—review and editing, HIH and YMS; visualization, HIH; supervision, HIH and YMS; project administration, HIH; funding acquisition, HIH and YMS. All authors have read and agreed to the published version of the manuscript. 

Corresponding author

Correspondence to Hsing-I Hsiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YM., Len, MC. & Hsiang, HI. Effect of pre-calcination of Bi2O3 and Sb2O3 on the densification and varistor properties of low-temperature sintered ZnO-Bi2O3 ceramics. J Mater Sci: Mater Electron 34, 1750 (2023). https://doi.org/10.1007/s10854-023-11209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11209-9

Navigation