Skip to main content
Log in

Design and fabrication of all-inorganic transport materials-based Cs2SnI6 perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With lead-based perovskite materials, lead content and long-term stability are the big concerns. Recently, Cesium tin iodide (Cs2SnI6) double perovskite has gained recognition as a stable and environment-friendly photovoltaic material compared to lead-based perovskite materials. In the present study, we have investigated Cs2SnI6 based solar cell with all inorganic transport materials using SCAPS-1D. The optimized device exhibited a maximum efficiency of about 18%. Further we fabricated Cs2SnI6 perovskite films using a solution process approach, utilizing CsI and SnI4 in a 2:1 ratio. For synthesized double perovskite film, the crystallinity, morphologies, and optical characteristics were examined. Additionally, the stability analysis confirmed that the prepared perovskite films were stable for more than two months under ambient exposure. Finally, utilizing the synthesized Cs2SnI6 thin films as an absorber material, we fabricated two solar cells without and with hole transport layer (HTL), having configurations of glass/FTO/ZnO/Cs2SnI6/Ni and glass/FTO/ZnO/Cs2SnI6/ MoS2/Ni, respectively, in the ambient conditions. As a major finding, it has been observed that the inclusion of MoS2 as HTL improved overall performance, with an enhancement in the power conversion efficiency (PCE) of nearly 45% compared to the device without HTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing is not applicable.

References

  1. R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, A review of perovskites solar cell stability. Adv. Func. Mater. (2019). https://doi.org/10.1002/adfm.201808843

    Article  Google Scholar 

  2. National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart (1976 to the present), (2020),https://www.nrel.gov/pv/cell-fficiency.html .

  3. J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. (2017). https://doi.org/10.1038/natrevmats.2017.42

    Article  Google Scholar 

  4. P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng, W.-H. Zhang, Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201807661

    Article  Google Scholar 

  5. D. Kumari, S.K. Pandey, Comprehensive study and performance analysis of eco-friendly double perovskite Cs2AgBiBr 6 on Si tandem solar cell. J. Optical. Soc. AmericaB (2022). https://doi.org/10.1364/JOSAB.443938

    Article  Google Scholar 

  6. B. Salhi, Y.S. Wudil, M.K. Hossain, A. Al-Ahmed, F.A. Al- Sulaiman, Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Ener. Rev. 90, 210–222 (2018). https://doi.org/10.1016/j.rser.2018.03.058

    Article  CAS  Google Scholar 

  7. D. Kumari, Saurabh Kumar Pandey, Effect of an ultra-thin 2D transport layer on eco-friendly Perovskite/CIGS tandem solar cell: A numerical study. Micro. Nanostruct. (2022). https://doi.org/10.1016/j.micrna.2022.207398

    Article  Google Scholar 

  8. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. NatMater 15(3), 247–251 (2016). https://doi.org/10.1038/nmat4572

    Article  CAS  Google Scholar 

  9. Ke. Weijun, M.G. Kanatzidis, Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-8918-3

    Article  Google Scholar 

  10. X. Qiu et al., From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48eV and high absorption coefficient. Solar Ener. Mater. Solar. Cells (2017). https://doi.org/10.1016/j.solmat.2016.09.022

    Article  Google Scholar 

  11. X. Qiu, Y. Jiang, H. Zhang, Z. Qiu, S. Yuan, P. Wang, B. Cao, Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers. Phys. Status. Solidi. RRL 10, 587–591 (2016). https://doi.org/10.1002/pssr.201600166

    Article  CAS  Google Scholar 

  12. Y. Jiang, H. Zhang et al., The air and thermal stabilities of lead-free perovskite variant Cs2SnI6 powder. MaterialsLetters (2017). https://doi.org/10.1016/j.matlet.2017.04.046

    Article  Google Scholar 

  13. A. Suazo, F. Josué, S. Shaji, D.A. Avellaneda, J.A. Martínez, B. Krishnan, Solar cell using spray casted Cs2SnI6 perovskite thin films on chemical bath deposited CdS yielding high open circuit voltage”. SolarEnergy (2020). https://doi.org/10.1016/j.solener.2020.06.101

    Article  Google Scholar 

  14. S.T. Umedov, D.B. Khadka, M. Yanagida, A. Grigorieva, Y. Shirai, A-site tailoring in the vacancy-ordered double perovskite semiconductor Cs2SnI6 for photovoltaic application. Sol. Energy Mater. Sol. Cells (2021). https://doi.org/10.1016/j.solmat.2021.111180

    Article  Google Scholar 

  15. W. Zhu, T. Yao, J. Shen, W. Xu et al., In situ investigation of water interaction with lead-free all inorganic perovskite (Cs2SnIxCl6−x)”. J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b00720

    Article  Google Scholar 

  16. B. Lee, C.C. Stoumpos, N. Zhou et al., Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. J. Am. Chem. Soc. 136(43), 15379–15385 (2014). https://doi.org/10.1021/ja508464

    Article  CAS  Google Scholar 

  17. J. Zhang, S. Li, P. Yang et al., Enhanced stability of lead-free perovskite heterojunction for photovoltaic applications. J MaterSci 53, 4378–4386 (2018). https://doi.org/10.1007/s10853-017-1890-z

    Article  CAS  Google Scholar 

  18. G. Kapil, T. Ohta, T. Koyanagi et al., Investigation of interfacial charge transfer in solution processed Cs2SnI6 thin films. J. Phys. Chem. C 121(24), 13092–13100 (2017). https://doi.org/10.1021/acs.jpcc.7b04019

    Article  CAS  Google Scholar 

  19. J. C.-R Ke., D. J. Lewis, A. S. Walton, B. F. Spencer, P. O’Brien, A. G. Thomas, & W. R. Flavell, Ambient-air-stable inorganic Cs2SnI6 double perovskite thin films via aerosol-assisted chemical vapour deposition. J. Mater. Chem. A 6(24), 11205–11214 (2018). https://doi.org/10.1039/C8TA03133A

    Article  Google Scholar 

  20. X.D. Wang, Y.H. Huang, J.F. Liao, Y. Jiang et al., In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. (2019). https://doi.org/10.1021/jacs.9b04482

    Article  Google Scholar 

  21. D. Liu, T. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon 8, 133–138 (2014). https://doi.org/10.1038/nphoton.2013.342

    Article  CAS  Google Scholar 

  22. J. Urieta-Mora, I. Garcia-Benito, A. Molina-Ontoria, N. Martin, Hole transporting materials for perovskite solar cells: a chemical approach. Chem Soc Rev. (2018). https://doi.org/10.1039/c8cs00262b

    Article  Google Scholar 

  23. G.W. Kim, H. Choi, M. Kim, J. Lee, S.Y. Son, T. Park, Hole transport materials in conventional structural (n-i-p) perovskite solar cells: from past to the future. Adv Energy Mater (2020). https://doi.org/10.1002/aenm.201903403

    Article  Google Scholar 

  24. Z. Hawash, L.K. Ono, Y.B. Qi, Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells. Adv. Mater. Interfaces. (2018). https://doi.org/10.1002/admi.201700623

    Article  Google Scholar 

  25. D.Y. Liu, Y. Li, J.Y. Yuan, Q.M. Hong, G.Z. Shi, D.X. Yuan, J. Wei, C.C. Huang, J.X. Tang, M.K. Fung, Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J. Mater. Chem. A. (2017). https://doi.org/10.1039/C6TA10212C

    Article  Google Scholar 

  26. Y. Zhang, M. Elawad, Z. Yu, X. Jiang, J. Lai, L. Sun, Enhanced performance of perovskite solar cells with P3HT hole-transporting materials via molecular p-type doping. RSC Adv. (2016). https://doi.org/10.1039/C6RA21775C

    Article  Google Scholar 

  27. Md. Anower Hossain, B.A. Merzougui, F.H. Alharbi, N. Tabet, Electrochemical deposition of bulk MoS2 thin films for photovoltaic applications. Solar Ener. Mater. Solar. Cells. (2018). https://doi.org/10.1016/j.solmat.2018.06.026

    Article  Google Scholar 

  28. Y. Li, Y. Wang, Q. Zuo, B. Li, Y. Li, W. Cai, J. Qing, Y. Li, X. Liu, J. Shi, L. Hou, Improved efficiency of organic solar cell using MoS2 doped poly(3,4-ethylenedioxythiophene) (PEDOT) as hole transport layer. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153042

    Article  Google Scholar 

  29. D. Wang, N.K. Elumalai, Md.A. Mahmud, H. Yi, M.B. Upama, R.A.L. Chin, G. Conibeer, C. Xu, F. Haque, L. Duan, A. Uddin, MoS2 incorporated hybrid hole transport layer for high performance and stable perovskite solar cells. Synth. Metals. (2018). https://doi.org/10.1016/j.synthmet.2018.10.012

    Article  Google Scholar 

  30. A. Capasso, F. Matteocci, L. Najafi, M. Prato, J. Buha, L. Cinà, V. Pellegrini, A.D. Carlo, F. Bonaccorso, Few-layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv. Energy Mater. (2016). https://doi.org/10.1002/aenm.201600920

    Article  Google Scholar 

  31. U. Dasgupta, S. Chatterjee, A.J. Pal, Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Solar Energy Mater. Solar Cells 172(2017), 353–360 (2017). https://doi.org/10.1016/j.solmat.2017.08.012

    Article  CAS  Google Scholar 

  32. X. Nairui, T. Yehua, Q. Yali, L. Duoduo, W. Ke-Fan, One-step solution synthesis and stability study of inorganic perovskite semiconductor Cs2SnI6. Sol. Energy 204, 429–439 (2020). https://doi.org/10.1016/j.solener.2020.04.079

    Article  CAS  Google Scholar 

  33. D. Saikia, J. Bera, A. Betal, S. Sahu, Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2021.111839

    Article  Google Scholar 

  34. Md Dulal Haque, Md Hasan Ali, Md Ferdous Rahman, Abu Zafor Md Touhidul Islam, Numerical analysis for the efficiency enhancement of MoS2 solar cell: A simulation approach by SCAPS-1D. Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112678

    Article  Google Scholar 

  35. H. Dixit, D. Punetha, S.K. Pandey, Performance investigation of Mott-insulator LaVO3 as a photovoltaic absorber material. J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07581-0

    Article  Google Scholar 

  36. A. Kumar, N. Pandey, D. Punetha, R. Saha, S. Chakrabarti, Enhancement in the structural and optical properties after incorporation of reduced graphene oxide (rGO) nanocomposite in pristine CsSnBr 3 for solar cell application. ACS Appl. Electron. Mater. (2023). https://doi.org/10.1021/acsaelm.3c00224

    Article  Google Scholar 

  37. A. Kumar, N. Pandey, D. Punetha, R. Saha, S. Chakrabarti, Tenability and improvement of the structural, electronic, and optical properties of lead-free CsSnCl3 perovskite by incorporating reduced graphene oxide (rGO) for optoelectronic applications. J. Mater. Chem. C 11(10), 3606–3615 (2023). https://doi.org/10.1039/D2TC04586A

    Article  CAS  Google Scholar 

  38. R. Shukla, D. Punetha, R. Kumar, S.K. Pandey, Examining the performance parameters of stable environment friendly perovskite solar cell. Optical. Mater. (2023). https://doi.org/10.1016/j.optmat.2023.114124

    Article  Google Scholar 

  39. S. Ternes, J. Mohacsi, N. Lüdtke, H.M. Pham, M. Arslan, P. Scharfer, W. Schabel, B.S. Richards, U.W. Paetzold, Drying and coating of perovskite thin films: how to control the thin film morphology in scalable dynamic coating systems. ACS Appl. Mater. Interfaces. 14(9), 11300–11312 (2022). https://doi.org/10.1021/acsami.1c22363

    Article  CAS  Google Scholar 

  40. R. Shukla, R. Kumar, D. Punetha, S.K. Pandey, Design perspective, fabrication, and performance analysis of formamidinium tin halide perovskite solar cell. IEEE J. Photovoltaics. (2023). https://doi.org/10.1109/JPHOTOV.2023.3241793

    Article  Google Scholar 

  41. P. Subudhi, D. Punetha, Progress, challenges, and perspectives on polymer substrates for emerging flexible solar cells: A holistic panoramic review. Prog. Photovoltaics: Res. Applications. (2023). https://doi.org/10.1002/pip.3703

    Article  Google Scholar 

  42. R. Shukla, S. Pandey, Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell. IEEE Trans. Electron Devices (2020). https://doi.org/10.1109/TED.2020.2996570

    Article  Google Scholar 

  43. B. Chen, H. Hu, T. Salim, Y.M. Lam, A facile method to evaluate the influence of trap densities on perovskite solar cell performance. J. Mater. Chem. C 7, 5646–5651 (2019). https://doi.org/10.1039/C9TC00816K

    Article  CAS  Google Scholar 

  44. M.F. Mohamad Noh, N.A. Arzaee, I.N. Nawas Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A. R. Bin M. Usoff, M. K. Nazeeruddin, and M. A. Mat Teridi, High-humidity processed perovskite solar cells. J. Mater. Chem. A 8, 10481–10518 (2020). https://doi.org/10.1039/d0ta01178a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to the Chemistry, Physics, and Mechanical departments of IIT Patna for accessing their resources for the characterization of prepared samples. The authors also express their gratitude to Prof. Marc Burgelman from the University of Ghent, Ghent, Belgium, for providing SCAPS-1D software to carry out research.

Author information

Authors and Affiliations

Authors

Contributions

Dolly Kumari: conception, methodology, simulation analysis, manuscript writing Nilesh Jaiswal: conception, methodology, formal analysis, manuscript writing Ragvendra Shukla: methodology, result analysis, proofreading Deepak Punetha: methodology, result analysis, proofreading Sushil Kumar Pandey: Continous supervision and proofreading Saurabh Kumar Pandey: Continous supervision and proofreading.

Corresponding author

Correspondence to Saurabh Kumar Pandey.

Ethics declarations

Competing interest

The authors claim that they have no known conflicts of interest that would have affected the research findings in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, D., Jaiswal, N., Shukla, R. et al. Design and fabrication of all-inorganic transport materials-based Cs2SnI6 perovskite solar cells. J Mater Sci: Mater Electron 34, 1792 (2023). https://doi.org/10.1007/s10854-023-11197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11197-w

Navigation