Skip to main content
Log in

Effect of neodymium doping on structural, optical, and dielectric properties of Ni ferrites synthesized by citrate gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Neodymium rare earth (Nd3+)-doped nickel ferrite nanoparticles, chemically denoted as NiNdxFe2−xO4 (X = 0.01 to 0.10 in the step of 0.02), have been produced using the citrate gel auto-combustion method. The significant effect that adding Nd3+ to nickel ferrite had on changing the cation distribution as well as the material's structural and dielectric properties is researched and reported. The formation of crystal structures and crystalline size were investigated using X-ray diffraction. The electron microscope techniques using field emission were used to examine the microstructural characteristics, which show the production of nanocrystalline grains with spherical morphology. It is possible to utilize Raman spectroscopy to determine differences in nanoparticle phases and phase transitions. According to infrared spectroscopy, the spinel ferrite lattice system contains two absorption bands linked to tetrahedral and octahedral complexes. The substitution of Nd3+ion changes in particle size and cation redistribution. The examination of the dielectric might provide detailed knowledge of the charge transfer mechanism in the electrical conduction and dielectric polarization processes. These material's dielectric characteristics are influenced by their chemical makeup, processing technique, sintering process, and temperature. As the Nd3+ concentration rises, the dielectric loss reduces. The neodymium substitution is advantageous for electronic devices because they have reduced dielectric loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gloria Graf, Petra Spoerk-Erdely, Peter Staron, Andreas Stark, Francisca Mendez Martin, Helmut Clemens, Thomas Klein, Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio:An in situ SAXS and HEXRD study. Acta Materialia. 227 (2022) 117727. https://doi.org/10.1016/j.actamat.2022.117727.

  2. G.L. Castiglioni, G. Minelli, P. Porta, A. Vaccari, Synthesis and Properties of Spinel-Type Co-Cu-Mg-Zn-Cr Mixed Oxides. J. Solid State Chem. 152, 526–532 (2000). https://doi.org/10.1006/jssc.2000.8724

    Article  CAS  Google Scholar 

  3. Zhao,Long-Qing. Wang,Cheng. Chen,Jun-Chen. Ning,Hong. Yang,Zheng. Xu,Jin. Wang, Hui-Yuan. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization. J. Alloys Compd. 849 (2020) 156640. https://doi.org/10.1016/j.jallcom.2020.156640.

  4. M. Ishfaq Ahmed, U.S. GhulamMustafa, A.G. GulzarHussain, HafeezAnwar Ismail, A detailed investigation of lanthanum substituted bismuth ferrite for enhanced structural, optical, dielectric, magnetic and ferroelectric properties. Results Phys. 38, 105584 (2022)

    Article  Google Scholar 

  5. https://doi.org/10.1016/j.rinp.2022.105584

  6. N. Hari kumar, D. Ravinder, T. AnilBabu, Nakiraboina Venkatesh, S. Swathi, N. V. Krishna Prasad, Development of Cu2+ substituted Ni-Zn ferrite nano-particles and their high-temperature semiconductor behaviour. Journal of Indian chemical society 99 (2022) 100362. https://doi.org/10.1016/j.jics.2022.100362

  7. Guo, Feng. Fang, Liqiang. Zhao, Xueping. Li,Yuguang. Cai,Huisheng. Effects of content and distribution of Zn and Gd on formation ability of phase and W phase in Mg-Zn-Gd-Zr alloy. J. Alloys Compd. 862 (2021) 158543. https://doi.org/10.1016/j.jallcom.2020.158543.

  8. Banoth Baburao, N. Hari kumar, Avula Edukondalu, M. Venkata Narayana, D. Ravinder, Structural , optical, DC electrical , thermo -electric , dielectric an d magnetic properties of Mg0.8Zn0.2GdxFe2-xO4 nanoparticle s synthesised by citrate -gel auto combustion method. Inorg. Chem. Commun. 148, 110355 (2023). https://doi.org/10.1016/j.inoche.2022.110355

  9. Khalil, Gmal. Gouterman, Martin. Ching, Stephan. Costin, Colin. Coyle, Lisa. Gouin, Sebastien. Green, Edmond. Sadilek,Martin. Wan,River . Yearyean Jeff and Zeleow, Biniam Synthesis and spectroscopic characterization of Ni,Zn,Pd and Pt tetra (pentafluorophenyl)po rpholactone with comparisons to Mg,Zn,Y,Pd and Pt metal complexes of tetra(pentafiuorophenyl)porphine. JPP.06 (2002)135–145. https://doi.org/10.1142/S108842460200018X.

  10. AmnaIrshad, Mehmooda Zulfiqar, Hazim M. Ali, Neelam Shahzadi, Hala H.Abd El-Gawad, Chanat Chokejaroenrat, Chainarong Sakulthaew, Farida Anjum, Muhammad Suleman, Co-substituted Mg–Zn spinel nanocrystalline ferrites: Synthesis, characterization and evaluation of catalytic degradation efficiency for colored and colorless compounds, Ceramic International. Ceram. Int. 48 (20) (2022) 29805–29815. https://doi.org/10.1016/j.ceramint.2022.06.241

  11. N. Hari kumar, Ravinder, D. & Edukondalu, A. Effect of Ce3+ ion doped Ni-Zn Ferrites: Structural, Optical and Low temperature Magnetic Properties. J. Chem. Phys. 81, 171–180 (2022). https://doi.org/10.1016/j.cjph.2022.11.019

  12. M.A. Rahman, M.T. Islam, M.S.J. Singh et al., Synthesis and characterization of Mg–Zn ferrite based flexible microwave composites and its application as SNG metamaterial. Sci Rep 11, 7654 (2021). https://doi.org/10.1038/s41598-021-87100-6

    Article  CAS  Google Scholar 

  13. Abu El-Fadl, A.M. Hassan, M.A. Kassem, Tunable cationic distribution and structure-related magnetic and optical properties by Cr3+ substitution for Zn2+ in nanocrystalline Ni-Zn ferrites, Results Phys. 28 (2021) 104622. https://doi.org/10.1016/J.RINP.2021.104622.

  14. G. Florio, Applications of Magnetic Materials, Encyclopedia of Smart Materials. (2022) 24–31. https://doi.org/10.1016/B978-0-12-815732-9.00067-X.

  15. Edapalli Sumalatha, N. Hari kumar, Avula Edukondalu, D. Ravinder, Effect of La3+ ion doped Co-Zn Nano Ferrites: Structural, Optical, Electrical and Magnetic Properties. Inorg. Chem. Commun. 146, 110200 (2022). https://doi.org/10.1016/j.inoche.2022.110200

  16. R. Charguia, S. Hcini, S, F. Hcini, Thermal, Microstructural, Magnetic, and Optical Studies for La0.7M0.3CoO3 (M = Ca, Pb) Cobaltites for Potential Magneto-optical Applications, J Supercond Nov Magn. 35 (2022) 603–613. https://doi.org/10.1007/s10948-021-06109-0.

  17. Z. Zhao, Z. Li, Structures and magnetic and electronic properties of the O2-adsorbed Fe2N clusters. Struct Chem. 32, 127–133 (2021). https://doi.org/10.1007/s11224-020-01626-5

    Article  CAS  Google Scholar 

  18. G. Aravind, M. Ragasudha, D. Ravinder, Electrical transport properties of nano crystalline Li–Ni ferrites. Journal of materiomics. 1, 348–356 (2015). https://doi.org/10.1016/j.jmat.2015.09.003

    Article  Google Scholar 

  19. Galagali S.L, Patil R.A, Adaki R.B, Hiremath C.S. Electrical and Magnetic Properties of Mg1–x Cdx Fe2O4 Ferrites (x = 0.2, 0.4, 0.6, 0.8). Int. J. Self-Propagating High-Temp. Synth.27(2018)107–113. https://doi.org/10.3103/S1061386218020073

  20. VivekDhand, HyunhoShin, GyeonghunHan, S. Bharadwaj, KyongyopRhee, SanghoonKim, 2022. Synthesis, characterization, and mechanical properties of oxygen-deficient ferro-diamagnetic transitional barium iron oxide perovskite/polydimethylsiloxane composites. J. Alloys Compd. 910, 164765. https://doi.org/10.1016/j.jallcom.2022.164765.

  21. Danijela Lukovic Golic, Aleksandar Radojkovica, Aleksandra Dapcevicb, Damir Pajicc, Jure Dragovicc, Filip Toricc, Jovana Cirkovica, Goran Brankovica, Zorica Brankovic, change in structural, ferroelectric, and magnetic properties of bismuth ferrite induced by doping with gadolinium. Ceram. Int. 45, 19158–19165 (2019). https://doi.org/10.1016/j.ceramint.2019.06.162

    Article  CAS  Google Scholar 

  22. K.D.Martinson, V.E.Belyak, D.D.Sakhno, A.A.Ivanov, L.A.Lebedev, L.A.Nefedova, I.B.Panteleev, V.I.Popkov, 2022. Solution combustion assisted synthesis of ultra-magnetically soft Li Zn Ti Mn ferrite ceramics. J. Alloys Compd. 894, 162554. https://doi.org/10.1016/j.jallcom.2021.162554.

  23. Burra. Aparna, N. Hari kumar, Avula Edukondalu , D. Ravinder, Kaleem Ahmed Jaleeli , P-type semiconductor Gd/Fe ion doped Ni-Mg nanoferrites applications, 2023. Results in chemistry. 5, 100957. https://doi.org/10.1016/j.rechem.2023.100957

  24. Tokkaya, S.K. Çetin, B. Altan, Effect of Sintering Time on the Crystallisation, Morphology, Structure, Electric, Magnetic and Magnetocaloric Properties of La0.80Ag0.20MnO3, J Supercond Nov Magn. 35 (2022) 303–314. https://doi.org/10.1007/s10948-021-06044-0.

  25. Ashok V. Humbe,Jitendra S. Kounsalye, Sandeep B. Somvanshi, Arun Kumar c and K. M. Jadhav. Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Mater. Adv., 2020,1, 880–890.

  26. Banoth Baburao, N. Hari kumar, Avula Edukondalu, D. Ravinder, Influence of Er/Fe Substitution on Mg-Zn Nanoparticles' Electromagnetic Properties and Applications. Braz. J. Phys. 53 (2023) 101. https://doi.org/10.1007/s13538-023-01300-1

  27. M.M. Arman, Synthesis, Characterization, Magnetic Properties, and Applications of La0.85Ce0.15FeO3 Perovskite in Heavy Metal Pb2+ Removal, J Supercond Nov Magn. 35 (2022) 1241–1249. https://doi.org/10.1007/s10948-022-06168-x.

  28. D. Eum, B. Kim, J.H. Song, Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 5435, 3 (2022). https://doi.org/10.1038/s41563-022-01209-1

    Article  CAS  Google Scholar 

  29. S.E. Ali, Influence of preparation method on phase formation, structural and magnetic properties of BiFeO3. J Electroceram. 48, 95–101 (2022). https://doi.org/10.1007/s10832-021-00276-1

    Article  CAS  Google Scholar 

  30. S.J. Kashyap, R. Sankannavar, G.M. Madhu, Synthesis and Characterization of La (Ce, Ba) NiO3 Perovskite-Type Oxides. J Supercond Nov Magn. 35, 2107–2118 (2022). https://doi.org/10.1007/s10948-022-06219-3

    Article  CAS  Google Scholar 

  31. XiYao, Jian-PingZhou, Xiao-LiZhang, Xiao-MingChen, 2022. Magnetodielectric mechanism and application of magnetoelectric composites. J. Magn. Magn. Mater. 550, 169099. https://doi.org/10.1016/j.jmmm.2022.169099.

  32. O. Michael, Ogunbunmi Andre M. Strydom, 2022. Physical and magnetic properties of frustrated triangular-lattice antiferromagnets R3Cu (R = Ce, Pr). J. Alloys Compd. 895, 162545. https://doi.org/10.1016/j.jallcom.2021.162545.

  33. Y. Sandeep, T. Rambabu, L. Kunja, O. Borang, G. Aravind, A. Dode, V. Nathanial, Low sintering effect on structural, electrical and magnetic properties of rare-earth metal ion Er3+-substituted nickel–zinc spinal ferrites, Journal of Materials Science: Materials in Electronics. 33 (2022). https://doi.org/10.1007/s10854-021-07332-0.

  34. K. Naz, J.K. Khan, M. Khalid, M.S. Akhtar, Z.A. Gilani, H.M. Noor ul Huda Khan Asghar, G.A.M. Mersal, M.M. Ibrahim, A. Muhammad, M.G.B. Ashiq, Structural, dielectric, impedance and electric modulus analysis of Ni substituted copper spinel ferrites nanoparticles for microwave device applications, Mater Chem Phys. 285 (2022) 126091. https://doi.org/10.1016/j.matchemphys.2022.126091.

  35. N. Venkatesh, N.H. Kumar, S. Goud, T.A. Babu, N.V.K Prasad, Ftir, optical, electrical and magnetic properties of SM3+ doped MG nano ferrites, Biointerface Res. Appl. Chem. 11(6) (2021) 15037–15050. http://dx.doi.org/https://doi.org/10.21203/rs.3.rs-227009/v1

  36. X. Yao, H. Ning, A. Zhao, M. Hao, Ismail, Effect of Gd-Doping on Structural, Optical, and Magnetic Properties of NiFe2O4As-prepared Thin Films via Facile Sol-Gel Approach. ACS Omega 6, 6305–6311 (2021). https://doi.org/10.1021/acsomega.0c06097

    Article  CAS  Google Scholar 

  37. Y. Sandeep, T. Rambabu, G. Vinod, M. Venkata Narayana, G. Aravind, V. Nathanial, Investigation of structural and dielectric properties of Gd3+ substituted nickel-zinc ferrite prepared via low-temperature citrate gel self-ignited process, Mater Today Proc. 59 (2022) 1211–1220. https://doi.org/10.1016/J.MATPR.2022.03.423.

  38. M.M.N. Ansari, S. Khan, N. Ahmad, Structural, electrical transport and magnetic properties of Nd3+ substituted Mn–Cu nanoferrites, J Alloys Compd. 831 (2020) 154778. https://doi.org/10.1016/J.JALLCOM.2020.154778.

  39. M.I. Arshad, M.S. Hasan, A.U. Rehman, M. Akhtar, L.D. Tung, N. Amin, K. Mahmood, A. Ali, T. Trakoolwilaiwan, N.T.K. Thanh, Structural, optical, electrical, dielectric, molecular vibrational and magnetic properties of La3+ doped Mg–Cd–Cu ferrites prepared by Co-precipitation technique. Ceram Int. 48, 14246–14260 (2022). https://doi.org/10.1016/J.CERAMINT.2022.01.313

    Article  CAS  Google Scholar 

  40. M.A. Marjeghal, A. Sedghi, S. Baghshahi, Synergic effect of additives on the structure and properties of nano strontium hexaferrite synthesized via the gel combustion method, Materials Science and Engineering: B. 278 (2022) 115631. https://doi.org/10.1016/J.MSEB.2022.115631.

  41. N. Hari kumar, Ravinder, D. Edukondalu, A. Synthesis, structural, antimicrobial activity and dielectric properties of Ce3+-doped Ni–Zn nano-ferrites. Appl. Phys. A. 128 (2022) 978. https://doi.org/10.1007/s00339-022-06096-6.

  42. C. Kumari, H.K. Dubey, F. Naaz, P. Lahiri, Structural and optical properties of nanosized Co substituted Ni ferrites by coprecipitation method. Phase Transit. 93, 207–216 (2020). https://doi.org/10.1080/01411594.2019.1709120

    Article  CAS  Google Scholar 

  43. V. Ludhiya, N. Hari Kumar, D. Ravinder, A. Edukondalu, Inorg. Chem. Commun. 150, 110558 (2023). https://doi.org/10.1016/j.inoche.2023.110558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to SV-TPTY, the head, and BOS of the physics department at Osmania University's university college of science in Hyderabad.

Author information

Authors and Affiliations

Authors

Contributions

PS contributed toward conceptualization, methodology, data curation, and writing—original draft. NHK contributed toward data curation, and review and editing. AE contributed toward review and editing. DR contributed toward supervision.

Corresponding authors

Correspondence to N. Hari kumar or D. Ravinder.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The datasets generated during or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanthakumari, P., kumar, N.H., Edukondalu, A. et al. Effect of neodymium doping on structural, optical, and dielectric properties of Ni ferrites synthesized by citrate gel auto-combustion method. J Mater Sci: Mater Electron 34, 1775 (2023). https://doi.org/10.1007/s10854-023-11193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11193-0

Navigation