Abstract
In this work, the Sn-doped titanium niobate Snx-TiNb2O7 (Snx-TNO, x = 0.005, 0.01, 0.02, 004, 0.06, 0.08) samples have been fabricated through a solid-state reaction method with the aim of investigating the effect of Sn4+ doping on the electrochemical performance enhancement of TiNb2O7 (TNO). Elemental mapping image indicates that Sn is successfully doped and evenly distributed in the TNO sample. XRD patterns show that the doping of Sn4+ can slightly increase the lattice spacing of TNO materials, which can increase the diffusion coefficient of Li+ ions due to the ion-size effect. The specific capacity, capacity retention, long cycle performance, and rate performance of Snx-TNO materials are all superior to those of TNO, and Sn0.01-TNO has the best performance. Compared with TNO, Sn0.01-TNO exhibited a smaller polarization potential, indicating that the doping of tin elements resulted in a more efficient kinetic reaction process and a higher redox reversibility. The EIS results further verify that the Sn0.01-TNO material has a lower charge transfer impedance and a higher ion diffusion coefficient compared to the TNO material, resulting in better electrochemical performance of the Sn0.01-TNO material. The strategy of appropriate metal doping can improve the intrinsic electronic/ionic conductivity and structural stability of the material, providing new insights for the development of advanced high-power electrode materials.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed the current study are available from the corresponding author on reasonable request.
References
X. Lai, Q.W. Chen, X.P. Tang, Y.Q. Zhou, F.R. Gao, Y. Guo, R. Bhagat, Y.J. Zheng, Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. Etransportation 12, 22 (2022). https://doi.org/10.1016/j.etran.2022.100169
J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, S. Nowak, Recycling of lithium-ion batteries-current state of the art circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022). https://doi.org/10.1002/aenm.202102917
Y.L. An, Y. Tian, C.K. Liu, S.L. Xiong, J.K. Feng, Y.T. Qian, One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries. ACS Nano 16(3), 4560–4577 (2022). https://doi.org/10.1021/acsnano.1c11098
C.C. Li, W.N. Ge, S.Y. Qi, L. Zhu, R.Z. Huang, M.W. Zhao, Y.T. Qian, L.Q. Xu, Manipulating electrocatalytic polysulfide redox kinetics by 1D core-shell like composite for lithium-sulfur batteries. Adv. Energy Mater. 12(16), 2103915 (2022). https://doi.org/10.1002/aenm.202103915
C.L. Wei, L.W. Tan, Y.C. Zhang, Z.R. Wang, J.K. Feng, Y.T. Qian, Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014
Y. Zhang, X.J. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 216, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808
Y. Zhang, X.J. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438
Y. Zhang, X.J. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2021). https://doi.org/10.1021/acs.iecr.0c05055
Y. Zhang, X.J. Xu, Machine learning lattice constants for cubic perovskite compounds. ChemistrySelect 5(32), 9999–10009 (2020). https://doi.org/10.1002/slct.202002532
J. Hu, H.W. He, Z.B. Wei, Y. Li, Disturbance-immune and aging-robust internal short circuit diagnostic for lithium-ion battery. IEEE Trans. Industr. Electron. 69(2), 1988–1999 (2022). https://doi.org/10.1109/TIE.2021.3063968
X.M. Jiang, Y.J. Chen, X.K. Meng, W.G. Cao, C.C. Liu, Q. Huang, N. Naik, V. Murugadoss, M.A. Huang, Z.H. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191, 448–470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011
T. Jiang, S.Y. Ma, J.B. Deng, T. Yuan, C.F. Lin, M.L. Liu, Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9(5), 2105119 (2022). https://doi.org/10.1002/advs.202105119
A. Behrens, K. Foremny, T. Doll, Carbon nanotube-silicone rubber on active thin-film implants. Physica Status Solidi (a) 215(15), 1700873 (2018). https://doi.org/10.1002/pssa.201700873
X. Lu, Z.L. Jian, Z. Fang, L. Gu, Y.S. Hu, W. Chen, Z.X. Wang, L.Q. Chen, Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ. Sci. 4(8), 2638–2644 (2011). https://doi.org/10.1039/c0ee00808g
G.M. Liang, Z.B. Wu, C. Didier, W.C. Zhang, J. Cuan, B.H. Li, K.Y. Ko, P.Y. Hung, C.Z. Lu, Y.Z. Chen, G. Leniec, S.M. Kaczmarek, B. Johannessen, L. Thomsen, V.K. Peterson, W.K. Pang, Z.P. Guo, A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angewandte Chemie-Int. Ed. 132(26), 10681–10689 (2020). https://doi.org/10.1002/anie.202001454
C. Karaman, O. Karaman, N. Atar, A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection. Microchim. Acta 189(1), 24 (2022). https://doi.org/10.1007/s00604-021-05128-x
H.X. Yu, X. Cheng, H.J. Zhu, R.T. Zheng, T.T. Liu, J.D. Zhang, M. Shui, Y. Xie, J. Shu, Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.10.025
D. Liang, Y. Lu, L. Hu, L. Wang, S. Liang, X. Liang, C. Liang, Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries. J. Power Sources 544, 231897 (2022). https://doi.org/10.1016/j.jpowsour.2022.231897
W.T. Mao, K.C. Liu, G. Guo, G.Y. Liu, K.Y. Bao, J.L. Guo, M. Hu, W.B. Wang, B.B. Li, K.L. Zhang, Y.T. Qian, Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim. Acta 253, 396–402 (2017). https://doi.org/10.1016/j.electacta.2017.09.072
K.H. Liang, K.K. Gupta, C.H. Lu, S. Som, Preparation, structural, and characterizations of SnO2-coated TiNb2O7 anode materials for lithium-ion batteries. J. Am. Ceram. Soc. 105(10), 6168–6174 (2022). https://doi.org/10.1111/jace.18549
W.W. Liu, J. Liu, M.H. Zhu, W.Y. Wang, Y.M. Sun, Closely compacted TiNb2O7-C assembly for fast-charging battery anodes. ACS Appl. Energy Mater. 4(11), 12319–12325 (2021). https://doi.org/10.1021/acsaem.1c02144
K.J. Griffith, Y. Harada, S. Egusa, R.M. Ribas, R.S. Monteiro, R.B. Von Dreele, A.K. Cheetham, R.J. Cava, C.P. Grey, J.B. Goodenough, Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries. Chem. Mater. 33(1), 4–18 (2021). https://doi.org/10.1021/acs.chemmater.0c02955
P. Chen, X.H. Yuan, Y.B. Xia, Y. Zhang, L.J. Fu, L.L. Liu, N.F. Yu, Q.H. Huang, B. Wang, X.W. Hu, Y.P. Wu, T. van Ree, An Artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
T.T. Chen, F.F. Wang, S. Cao, Y. Bai, S.S. Zheng, W.T. Li, S.T. Zhang, S.X. Hu, H. Pang, In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 34(30), 2201779 (2022). https://doi.org/10.1002/adma.202201779
D. Lv, D.D. Wang, N.N. Wang, H.X. Liu, S.J. Zhang, Y.S. Zhu, K.P. Song, J. Yang, Y.T. Qian, Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity. J. Energy Chem. 68, 104–112 (2022). https://doi.org/10.1016/j.jechem.2021.11.040
T.T. Lv, X. Luo, G.Q. Yuan, S.Y. Yang, H. Pang, Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 428, 131211 (2022). https://doi.org/10.1016/j.cej.2021.131211
C.F. Lin, S. Yu, S.Q. Wu, S.W. Lin, Z.Z. Zhu, J.B. Li, L. Lu, Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries. J. Mater. Chem. A 3(16), 8627–8635 (2015)
K. Liu, J.A. Wang, J. Yang, D.Q. Zhao, P.Y. Chen, J.Z. Man, X.Y. Yu, Z.Q. Wen, J.C. Sun, Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes. Chem. Eng. J. 407, 127190 (2021). https://doi.org/10.1016/j.cej.2020.127190
Y. Zhang, C. Kang, W. Zhao, B.Y. Sun, X.J. Xiao, H. Huo, Y.L. Ma, P.J. Zuo, S.F. Lou, G.P. Yin, Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.06
K. Vijayanandhini, T.R.N. Kutty, Random existence of charge ordered stripes and its influence on the magnetotransport properties of La0.6Sr0.4MnO3 perovskite substituted with diamagnetic ions at Mn sublattice. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2913177
B.W. Zhang, L.X. Li, W.J. Luo, Oxygen vacancy regulation and its high frequency response mechanism in microwave ceramics. J. Mater. Chem. C 6(41), 11023–11034 (2018). https://doi.org/10.1039/c8tc03936d
C.R. Lei, X. Qin, S.Y. Huang, T.Y. Wei, Y.Z. Zhang, Mo-doped TiNb2O7 microspheres as improved anode materials for lithium-ion batteries. ChemElectroChem 8(17), 3379–3383 (2021). https://doi.org/10.1002/celc.202101056
J. Sato, N. Saito, H. Nishiyama, Y. Inoue, New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d(10) configuration. J. Phys. Chem. B 105(26), 6061–6063 (2001). https://doi.org/10.1021/jp010794j
K. Suekuni, H. Usui, S.Y. Qiao, K. Hashikuni, T. Hirano, H. Nishiate, C.H. Lee, K. Kuroki, K. Watanabe, M. Ohtaki, Electronic structure and thermoelectric properties of Sn1.2-xNbxTi0.8S3 with a quasi-one-dimensional structure. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5093183
P.A.K. Reddy, H. Han, K.C. Kim, S. Bae, Heterostructured NiCo2S4@ SnS2 hybrid for all-solid-state supercapacitor applications: delocalized charges on Co–S heterojunction improved electrochemical kinetics. ACS Appl. Energy Mater. 5(11), 13751–13762 (2022)
L. Li, L.L. Song, X.Y. Zhang, S.F. Zhu, Y.Q. Wang, Effect of substitutional and interstitial boron-doped NiCo2S4 on the electronic structure and surface adsorption: high rate and long- term stability. ACS Appl. Energy Mater. 5(2), 2505–2513 (2022). https://doi.org/10.1021/acsaem.1c04033
S.J. Zhan, H.T. Huang, C. He, Y. Xiong, P. Li, S.H. Tian, Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Appl. Catal. B-Environ. 321, 122040 (2023). https://doi.org/10.1016/j.apcatb.2022.122040
D.M. Kabtamu, A.W. Bayeh, T.C. Chiang, Y.C. Chang, G.Y. Lin, T.H. Wondimu, S.K. Su, C.H. Wang, TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Appl. Surf. Sci. 462, 73–80 (2018). https://doi.org/10.1016/j.apsusc.2018.08.101
W.L. Wang, B.Y. Oh, J.Y. Park, H. Ki, J. Jang, G.Y. Lee, H.B. Gu, M.H. Ham, Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability. J. Power Sources 300, 272–278 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.078
G.Y. Liu, B. Jin, K.Y. Bao, Y. Liu, H.Q. Xie, M. Hu, R.X. Zhang, Q. Jiang, Facile fabrication of porous Ti2R10O29 microspheres for high-rate lithium storage applications. Int. J. Hydrogen Energy 42(36), 22965–22972 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.211
Acknowledgements
This work was supported by Changzhou Science and Technology Bureau (CM20223017), the Natural Science Foundation of Jiangsu Province (Grants No. BK20201472), and National Natural Science Foundation of China (No.51972151, 52171212).
Funding
Changzhou Science and Technology Bureau,CM20223017, Keyan Bao, Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, BK20201472, Wutao Mao, Innovative Research Group Project of the National Natural Science Foundation of China, 51972151, Wutao Mao, 52171212, Zhongcheng Song.
Author information
Authors and Affiliations
Contributions
All authors contributed to the manuscript. All authors read and approved the final manuscript. HB: Data analysis and Writing; JG: data analysis; ZS: Data Curation; HG: Resources; ZZ: Visualization; WM: Conceptualization; KB: Methodology.
Corresponding authors
Ethics declarations
Conflict of interest
Conflict of interest on behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bian, H., Gu, J., Song, Z. et al. An effective strategy to achieve high-power electrode by tin doping: Snx-TiNb2O7 as a promising anode material with a large capacity and high-rate performance for lithium-ion batteries. J Mater Sci: Mater Electron 34, 1826 (2023). https://doi.org/10.1007/s10854-023-11183-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10854-023-11183-2