Skip to main content

Advertisement

Log in

An effective strategy to achieve high-power electrode by tin doping: Snx-TiNb2O7 as a promising anode material with a large capacity and high-rate performance for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the Sn-doped titanium niobate Snx-TiNb2O7 (Snx-TNO, x = 0.005, 0.01, 0.02, 004, 0.06, 0.08) samples have been fabricated through a solid-state reaction method with the aim of investigating the effect of Sn4+ doping on the electrochemical performance enhancement of TiNb2O7 (TNO). Elemental mapping image indicates that Sn is successfully doped and evenly distributed in the TNO sample. XRD patterns show that the doping of Sn4+ can slightly increase the lattice spacing of TNO materials, which can increase the diffusion coefficient of Li+ ions due to the ion-size effect. The specific capacity, capacity retention, long cycle performance, and rate performance of Snx-TNO materials are all superior to those of TNO, and Sn0.01-TNO has the best performance. Compared with TNO, Sn0.01-TNO exhibited a smaller polarization potential, indicating that the doping of tin elements resulted in a more efficient kinetic reaction process and a higher redox reversibility. The EIS results further verify that the Sn0.01-TNO material has a lower charge transfer impedance and a higher ion diffusion coefficient compared to the TNO material, resulting in better electrochemical performance of the Sn0.01-TNO material. The strategy of appropriate metal doping can improve the intrinsic electronic/ionic conductivity and structural stability of the material, providing new insights for the development of advanced high-power electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed the current study are available from the corresponding author on reasonable request.

References

  1. X. Lai, Q.W. Chen, X.P. Tang, Y.Q. Zhou, F.R. Gao, Y. Guo, R. Bhagat, Y.J. Zheng, Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. Etransportation 12, 22 (2022). https://doi.org/10.1016/j.etran.2022.100169

    Article  Google Scholar 

  2. J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, S. Nowak, Recycling of lithium-ion batteries-current state of the art circular economy, and next generation recycling. Adv. Energy Mater. 12, 2102917 (2022). https://doi.org/10.1002/aenm.202102917

    Article  CAS  Google Scholar 

  3. Y.L. An, Y. Tian, C.K. Liu, S.L. Xiong, J.K. Feng, Y.T. Qian, One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries. ACS Nano 16(3), 4560–4577 (2022). https://doi.org/10.1021/acsnano.1c11098

    Article  CAS  Google Scholar 

  4. C.C. Li, W.N. Ge, S.Y. Qi, L. Zhu, R.Z. Huang, M.W. Zhao, Y.T. Qian, L.Q. Xu, Manipulating electrocatalytic polysulfide redox kinetics by 1D core-shell like composite for lithium-sulfur batteries. Adv. Energy Mater. 12(16), 2103915 (2022). https://doi.org/10.1002/aenm.202103915

    Article  CAS  Google Scholar 

  5. C.L. Wei, L.W. Tan, Y.C. Zhang, Z.R. Wang, J.K. Feng, Y.T. Qian, Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014

    Article  Google Scholar 

  6. Y. Zhang, X.J. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 216, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  CAS  Google Scholar 

  7. Y. Zhang, X.J. Xu, Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5(25), 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  CAS  Google Scholar 

  8. Y. Zhang, X.J. Xu, Machine learning properties of electrolyte additives: a focus on redox potentials. Ind. Eng. Chem. Res. 60(1), 343–354 (2021). https://doi.org/10.1021/acs.iecr.0c05055

    Article  CAS  Google Scholar 

  9. Y. Zhang, X.J. Xu, Machine learning lattice constants for cubic perovskite compounds. ChemistrySelect 5(32), 9999–10009 (2020). https://doi.org/10.1002/slct.202002532

    Article  CAS  Google Scholar 

  10. J. Hu, H.W. He, Z.B. Wei, Y. Li, Disturbance-immune and aging-robust internal short circuit diagnostic for lithium-ion battery. IEEE Trans. Industr. Electron. 69(2), 1988–1999 (2022). https://doi.org/10.1109/TIE.2021.3063968

    Article  Google Scholar 

  11. X.M. Jiang, Y.J. Chen, X.K. Meng, W.G. Cao, C.C. Liu, Q. Huang, N. Naik, V. Murugadoss, M.A. Huang, Z.H. Guo, The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191, 448–470 (2022). https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  12. T. Jiang, S.Y. Ma, J.B. Deng, T. Yuan, C.F. Lin, M.L. Liu, Partially reduced titanium niobium oxide: a high-performance lithium-storage material in a broad temperature range. Adv. Sci. 9(5), 2105119 (2022). https://doi.org/10.1002/advs.202105119

    Article  CAS  Google Scholar 

  13. A. Behrens, K. Foremny, T. Doll, Carbon nanotube-silicone rubber on active thin-film implants. Physica Status Solidi (a) 215(15), 1700873 (2018). https://doi.org/10.1002/pssa.201700873

    Article  CAS  Google Scholar 

  14. X. Lu, Z.L. Jian, Z. Fang, L. Gu, Y.S. Hu, W. Chen, Z.X. Wang, L.Q. Chen, Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ. Sci. 4(8), 2638–2644 (2011). https://doi.org/10.1039/c0ee00808g

    Article  CAS  Google Scholar 

  15. G.M. Liang, Z.B. Wu, C. Didier, W.C. Zhang, J. Cuan, B.H. Li, K.Y. Ko, P.Y. Hung, C.Z. Lu, Y.Z. Chen, G. Leniec, S.M. Kaczmarek, B. Johannessen, L. Thomsen, V.K. Peterson, W.K. Pang, Z.P. Guo, A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angewandte Chemie-Int. Ed. 132(26), 10681–10689 (2020). https://doi.org/10.1002/anie.202001454

    Article  CAS  Google Scholar 

  16. C. Karaman, O. Karaman, N. Atar, A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection. Microchim. Acta 189(1), 24 (2022). https://doi.org/10.1007/s00604-021-05128-x

    Article  CAS  Google Scholar 

  17. H.X. Yu, X. Cheng, H.J. Zhu, R.T. Zheng, T.T. Liu, J.D. Zhang, M. Shui, Y. Xie, J. Shu, Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54, 227–237 (2018). https://doi.org/10.1016/j.nanoen.2018.10.025

    Article  CAS  Google Scholar 

  18. D. Liang, Y. Lu, L. Hu, L. Wang, S. Liang, X. Liang, C. Liang, Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries. J. Power Sources 544, 231897 (2022). https://doi.org/10.1016/j.jpowsour.2022.231897

    Article  CAS  Google Scholar 

  19. W.T. Mao, K.C. Liu, G. Guo, G.Y. Liu, K.Y. Bao, J.L. Guo, M. Hu, W.B. Wang, B.B. Li, K.L. Zhang, Y.T. Qian, Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim. Acta 253, 396–402 (2017). https://doi.org/10.1016/j.electacta.2017.09.072

    Article  CAS  Google Scholar 

  20. K.H. Liang, K.K. Gupta, C.H. Lu, S. Som, Preparation, structural, and characterizations of SnO2-coated TiNb2O7 anode materials for lithium-ion batteries. J. Am. Ceram. Soc. 105(10), 6168–6174 (2022). https://doi.org/10.1111/jace.18549

    Article  CAS  Google Scholar 

  21. W.W. Liu, J. Liu, M.H. Zhu, W.Y. Wang, Y.M. Sun, Closely compacted TiNb2O7-C assembly for fast-charging battery anodes. ACS Appl. Energy Mater. 4(11), 12319–12325 (2021). https://doi.org/10.1021/acsaem.1c02144

    Article  CAS  Google Scholar 

  22. K.J. Griffith, Y. Harada, S. Egusa, R.M. Ribas, R.S. Monteiro, R.B. Von Dreele, A.K. Cheetham, R.J. Cava, C.P. Grey, J.B. Goodenough, Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries. Chem. Mater. 33(1), 4–18 (2021). https://doi.org/10.1021/acs.chemmater.0c02955

    Article  CAS  Google Scholar 

  23. P. Chen, X.H. Yuan, Y.B. Xia, Y. Zhang, L.J. Fu, L.L. Liu, N.F. Yu, Q.H. Huang, B. Wang, X.W. Hu, Y.P. Wu, T. van Ree, An Artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309

    Article  CAS  Google Scholar 

  24. T.T. Chen, F.F. Wang, S. Cao, Y. Bai, S.S. Zheng, W.T. Li, S.T. Zhang, S.X. Hu, H. Pang, In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 34(30), 2201779 (2022). https://doi.org/10.1002/adma.202201779

    Article  CAS  Google Scholar 

  25. D. Lv, D.D. Wang, N.N. Wang, H.X. Liu, S.J. Zhang, Y.S. Zhu, K.P. Song, J. Yang, Y.T. Qian, Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity. J. Energy Chem. 68, 104–112 (2022). https://doi.org/10.1016/j.jechem.2021.11.040

    Article  CAS  Google Scholar 

  26. T.T. Lv, X. Luo, G.Q. Yuan, S.Y. Yang, H. Pang, Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 428, 131211 (2022). https://doi.org/10.1016/j.cej.2021.131211

    Article  CAS  Google Scholar 

  27. C.F. Lin, S. Yu, S.Q. Wu, S.W. Lin, Z.Z. Zhu, J.B. Li, L. Lu, Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries. J. Mater. Chem. A 3(16), 8627–8635 (2015)

    Article  CAS  Google Scholar 

  28. K. Liu, J.A. Wang, J. Yang, D.Q. Zhao, P.Y. Chen, J.Z. Man, X.Y. Yu, Z.Q. Wen, J.C. Sun, Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes. Chem. Eng. J. 407, 127190 (2021). https://doi.org/10.1016/j.cej.2020.127190

    Article  CAS  Google Scholar 

  29. Y. Zhang, C. Kang, W. Zhao, B.Y. Sun, X.J. Xiao, H. Huo, Y.L. Ma, P.J. Zuo, S.F. Lou, G.P. Yin, Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 47, 178–186 (2022). https://doi.org/10.1016/j.ensm.2022.01.06

    Article  Google Scholar 

  30. K. Vijayanandhini, T.R.N. Kutty, Random existence of charge ordered stripes and its influence on the magnetotransport properties of La0.6Sr0.4MnO3 perovskite substituted with diamagnetic ions at Mn sublattice. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2913177

    Article  Google Scholar 

  31. B.W. Zhang, L.X. Li, W.J. Luo, Oxygen vacancy regulation and its high frequency response mechanism in microwave ceramics. J. Mater. Chem. C 6(41), 11023–11034 (2018). https://doi.org/10.1039/c8tc03936d

    Article  CAS  Google Scholar 

  32. C.R. Lei, X. Qin, S.Y. Huang, T.Y. Wei, Y.Z. Zhang, Mo-doped TiNb2O7 microspheres as improved anode materials for lithium-ion batteries. ChemElectroChem 8(17), 3379–3383 (2021). https://doi.org/10.1002/celc.202101056

    Article  CAS  Google Scholar 

  33. J. Sato, N. Saito, H. Nishiyama, Y. Inoue, New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d(10) configuration. J. Phys. Chem. B 105(26), 6061–6063 (2001). https://doi.org/10.1021/jp010794j

    Article  CAS  Google Scholar 

  34. K. Suekuni, H. Usui, S.Y. Qiao, K. Hashikuni, T. Hirano, H. Nishiate, C.H. Lee, K. Kuroki, K. Watanabe, M. Ohtaki, Electronic structure and thermoelectric properties of Sn1.2-xNbxTi0.8S3 with a quasi-one-dimensional structure. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5093183

    Article  Google Scholar 

  35. P.A.K. Reddy, H. Han, K.C. Kim, S. Bae, Heterostructured NiCo2S4@ SnS2 hybrid for all-solid-state supercapacitor applications: delocalized charges on Co–S heterojunction improved electrochemical kinetics. ACS Appl. Energy Mater. 5(11), 13751–13762 (2022)

    Article  CAS  Google Scholar 

  36. L. Li, L.L. Song, X.Y. Zhang, S.F. Zhu, Y.Q. Wang, Effect of substitutional and interstitial boron-doped NiCo2S4 on the electronic structure and surface adsorption: high rate and long- term stability. ACS Appl. Energy Mater. 5(2), 2505–2513 (2022). https://doi.org/10.1021/acsaem.1c04033

    Article  CAS  Google Scholar 

  37. S.J. Zhan, H.T. Huang, C. He, Y. Xiong, P. Li, S.H. Tian, Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Appl. Catal. B-Environ. 321, 122040 (2023). https://doi.org/10.1016/j.apcatb.2022.122040

    Article  CAS  Google Scholar 

  38. D.M. Kabtamu, A.W. Bayeh, T.C. Chiang, Y.C. Chang, G.Y. Lin, T.H. Wondimu, S.K. Su, C.H. Wang, TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Appl. Surf. Sci. 462, 73–80 (2018). https://doi.org/10.1016/j.apsusc.2018.08.101

    Article  CAS  Google Scholar 

  39. W.L. Wang, B.Y. Oh, J.Y. Park, H. Ki, J. Jang, G.Y. Lee, H.B. Gu, M.H. Ham, Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability. J. Power Sources 300, 272–278 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.078

    Article  CAS  Google Scholar 

  40. G.Y. Liu, B. Jin, K.Y. Bao, Y. Liu, H.Q. Xie, M. Hu, R.X. Zhang, Q. Jiang, Facile fabrication of porous Ti2R10O29 microspheres for high-rate lithium storage applications. Int. J. Hydrogen Energy 42(36), 22965–22972 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Changzhou Science and Technology Bureau (CM20223017), the Natural Science Foundation of Jiangsu Province (Grants No. BK20201472), and National Natural Science Foundation of China (No.51972151, 52171212).

Funding

Changzhou Science and Technology Bureau,CM20223017, Keyan Bao, Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars, BK20201472, Wutao Mao, Innovative Research Group Project of the National Natural Science Foundation of China, 51972151, Wutao Mao, 52171212, Zhongcheng Song.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. All authors read and approved the final manuscript. HB: Data analysis and Writing; JG: data analysis; ZS: Data Curation; HG: Resources; ZZ: Visualization; WM: Conceptualization; KB: Methodology.

Corresponding authors

Correspondence to Wutao Mao or Keyan Bao.

Ethics declarations

Conflict of interest

Conflict of interest on behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, H., Gu, J., Song, Z. et al. An effective strategy to achieve high-power electrode by tin doping: Snx-TiNb2O7 as a promising anode material with a large capacity and high-rate performance for lithium-ion batteries. J Mater Sci: Mater Electron 34, 1826 (2023). https://doi.org/10.1007/s10854-023-11183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11183-2

Navigation