Skip to main content
Log in

Relationship between microstructure and microwave dielectric properties of glass-free low temperature co-fired CaLa2(MoO4)4 ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CaLa2(MoO4)4 ceramic material with a tetragonal scheelite structure was fabricated via a traditional solid-state reaction method. The CaLa2(MoO4)4 belongs to the tetragonal system of I41/a space group. Dense CaLa2(MoO4)4 ceramic can be formed at the optimal sintering temperature of 950 °C, and the sample exhibits good microwave dielectric properties of εr = 10.52, Qf = 37,497 GHz, τf = – 58 ppm/°C. The change of εr can be attributed to the density and Raman shift of ceramics, while the τf value can be attributed to the change of bond valence caused by the distribution of different ions at the A site. Raman spectroscopy reveals the correlation between microwave dielectric properties and lattice vibration of CaLa2(MoO4)4 ceramic. In addition, the compatibility between CaLa2(MoO4)4 ceramics and Ag was evaluated. These results indicate that CaLa2(MoO4)4 ceramics have broad prospects in LTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. M. Xiao, J. Lou, Y. Wei, P. Zhang, Crystal structure and microwave dielectric properties of MgZr1–xSnxNb2O8 ceramics. Ceram. Int. 44(1), 885–889 (2018)

    Article  CAS  Google Scholar 

  2. H. Wu, E.S. Kim, Characterization of low loss microwave dielectric materials Li3Mg2NbO6 based on the chemical bond theory. J. Alloys Compd. 669, 134–140 (2016)

    Article  CAS  Google Scholar 

  3. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    CAS  Google Scholar 

  4. D. Zhou, L.X. Pang, D.W. Wang, C. Li, B.B. Jin, I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5(38), 10094–10098 (2017)

    Article  CAS  Google Scholar 

  5. P. Zhang, K. Sun, S. Wu, M. Xiao, Microwave dielectric properties of low temperature co-fired ceramics LiMg1−xAxPO4 (A = Mn, Ca, 0.02 ≤ x ≤ 0.08). Mater. Lett. 255, 126565 (2019)

    Article  CAS  Google Scholar 

  6. W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, I.M. Reaney, Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 42(6), 2820–2826 (2022)

    Article  CAS  Google Scholar 

  7. X.Q. Song, K. Du, Z.Y. Zou, Z.H. Chen, W.Z. Lu, S.H. Wang, W. Lei, Temperature-stable BaAl2Si2O8–Ba5Si8O21-based low-permittivity microwave dielectric ceramics for LTCC applications. Ceram. Int. 43, 14453–14456 (2017)

    Article  CAS  Google Scholar 

  8. X.K. Lan, Z.Y. Zou, W.Z. Lu, J.H. Zhu, W. Lei, Phase transition and low-temperature sintering of Zn(Mn1−xAlx)2O4 ceramics for LTCC application. Ceram. Int. 42, 17731–17735 (2016)

    Article  CAS  Google Scholar 

  9. C. Li, W. Wen, H. Xiang, L. Fang, Y. Sun, Low temperature sintering and microwave dielectric properties of Zn3Mo2O9 ceramic. J. Mater. Sci. Mater. Electron. 29(3), 1907–1913 (2017)

    Article  Google Scholar 

  10. H. Tian, X. Liu, Y. Yang, H. Wu, Z. Zhang, C. Structure, Infrared spectra, and microwave dielectric properties of Ce2(Zr0.94Sn0.06)3(MoO4)9 ceramics with low sintering temperature. Front. Mater. 7, 145 (2020)

    Article  Google Scholar 

  11. Y. Ji, K. Song, X. Luo, B. Liu, H. Barzegar Bafrooei, D. Wang, Microwave dielectric properties of (1−x)Li2MoO4–xMg2SiO4 composite ceramics fabricated by cold sintering process. Front. Mater. 6, 256 (2019)

    Article  Google Scholar 

  12. H. Yu, J. Liu, W. Zhang, S. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci. Mater. Electron. 26(12), 9414–9423 (2015)

    Article  CAS  Google Scholar 

  13. M. Xiao, Y. Wei, H. Sun, J. Lou, P. Zhang, Crystal structure and microwave dielectric properties of low-permittivity Sr2MgSi2O7 ceramic. J. Mater. Sci. Mater. Electron. 29(23), 20339–20346 (2018)

    Article  CAS  Google Scholar 

  14. C. Du, H.H. Guo, D. Zhou, H.T. Chen, J. Zhang, W.F. Liu, J.Z. Su, H.W. Liu, Dielectric resonator antennas based on high quality factor MgAl2O4 transparent dielectric ceramics. J. Mater. Chem. C 8(42), 14880–14885 (2020)

    Article  CAS  Google Scholar 

  15. C. Du, M.S. Fu, D. Zhou, H.H. Guo, H.T. Chen, J. Zhang, J.P. Wang, S.F. Wang, H.W. Liu, W.F. Liu, L. Li, Z. Xu, Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications. J. Am. Ceram. Soc. 104(9), 4659–4668 (2021)

    Article  CAS  Google Scholar 

  16. M. Valant, D. Suvorov, Glass-free low-temperature cofired ceramics: calcium germanates, silicates and tellurates. J. Eur. Ceram. Soc. 24, 1715–1719 (2004)

    Article  CAS  Google Scholar 

  17. D. Zhou, J. Li, L.X. Pang, D.W. Wang, I.M. Reaney, Novel water insoluble (NaxAg2–x)MoO4 (0 ≤ x ≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees. J. Mater. Chem. C 5(24), 6086–6091 (2017)

    Article  CAS  Google Scholar 

  18. X. Li, W.G. Di Pang, Liu, Low-temperature sintering and microwave dielectric properties of CaMoO4-based temperature stable LTCC material. J. Am. Ceram. Soc. 97, 2032–2034 (2014)

    Article  Google Scholar 

  19. S. Hu, H. Zhou, X. Zhou, X. Luan, K. Wang, X. Chen, Phase structure, sintering behaviour and microwave dielectric properties of Ln2MoO6 (ln = La and Y) ceramics. Ceram. Int. 46(15), 24552–24556 (2020)

    Article  CAS  Google Scholar 

  20. J. Ren, K. Bi, X. Fu, Z. Peng, Novel Al2Mo3O12-based temperature-stable microwave dielectric ceramics for LTCC applications. J. Mater. Chem. C 6(42), 11465–11470 (2018)

    Article  CAS  Google Scholar 

  21. W. Liu, R. Zuo, A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc. 38(1), 339–342 (2018)

    Article  Google Scholar 

  22. J. Zheng, C. Xing, Y. Yang, S. Li, H. Wu, Z. Wang, Structure, infrared reflectivity spectra and microwave dielectric properties of a low-firing microwave dielectric ceramic Pr2Zr3(MoO4)9. J. Alloys Compd. 826, 153893 (2020)

    Article  CAS  Google Scholar 

  23. W. Liu, R. Zuo, Low temperature fired Ln2Zr3(MoO4)9 (ln = Sm, Nd) microwave dielectric ceramics. Ceram. Int. 43(18), 17229–17232 (2017)

    Article  CAS  Google Scholar 

  24. Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc. 39(4), 1127–1131 (2019)

    Article  CAS  Google Scholar 

  25. C.F. Xing, B. Wu, J. Bao, H.T. Wu, Y.Y. Zhou, Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic, Ceram. Int. 45(17), 22207–22214 (2019)

    CAS  Google Scholar 

  26. Y. He, X. Wei, G. He, Y. Wu, X. Chen, H. Zhou, Sintering behavior, phase composition, microstructure, and dielectric properties of low-permittivity alkaline earth silicate Sr3MgSi2O8 ceramics. J. Mater. Sci. Mater. Electron. 33(35), 26263–26275 (2022)

    Article  CAS  Google Scholar 

  27. A.M. Abakumov, V.A. Morozov, A.A. Tsirlin, J. Verbeeck, J. Hadermann, Cation ordering and flexibility of the BO42 tetrahedra in incommensurately modulated CaEu2(BO4)4 (B = Mo, W) scheelites. Inorg. Chem. 53(17), 9407–9415 (2014)

    Article  CAS  Google Scholar 

  28. G. He, Y. He, Y. Liu, H. Zhang, Y. Wu, J. Liang, H. Zhou, Sintering behaviour, phase composition, microstructure, and dielectric properties of BaSm2O4 microwave ceramics. Ceram. Int. 49(1), 548–557 (2022)

    Article  Google Scholar 

  29. H. Li, C. Cai, Q. Xiang, B. Tang, S. Yu, J. xiao, H. Luo, S. Zhang, Raman, complex chemical bond and structural studies of novel CaMg1−x(Mn1/2Zn1/2)Si2O6 (x = 0 − 0.1) ceramics. Ceram. Int. 45(17), 23157–23163 (2019)

    Article  Google Scholar 

  30. C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, The modulated structure and frequency upconversion properties of CaLa2(MoO4)4:Ho3+/Yb3+ phosphors prepared by microwave synthesis. Phys. Chem. Chem. Phys. 17(29), 19278–19287 (2015)

    Article  CAS  Google Scholar 

  31. M. J.Hanuza, J.H. Maczka, .v.d. Maas, polarized IR and Raman spectra of tetragonal NaBi(WO4)2 and NaBi(MoO4)2 and LiBi(MoO4)2 sigle crystals with scheelite structure. J. Mol. Struct. 348, 349–352 (1995)

    Article  Google Scholar 

  32. K. Nakomoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  33. Y. Tang, Z. Zhang, J. Li, M. Xu, Y. Zhai, L. Duan, C. Su, L. Liu, Y. Sun, L. Fang, A3Y2Ge3O12 (A = Ca, Mg): two novel microwave dielectric ceramics with contrasting τf and Q × f. J. Eur. Ceram. Soc. 40(12), 3989–3995 (2020)

    Article  CAS  Google Scholar 

  34. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  35. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, X. Yao, Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. J. Am. Ceram. Soc. 94(2), 348–350 (2011)

    Article  CAS  Google Scholar 

  36. Y. He, X. Wei, Y. Wu, X. Chen, J. Yang, H. Zhou, Effects of packing fraction, lattice vibration, and bond valence on the microwave dielectric properties of low-εr garnet-type Ca3Sc2Ge3O12 ceramics. J. Solid State Chem. 322, 123980 (2023)

    Article  CAS  Google Scholar 

  37. T.L. Sun, X.M. Chen, Raman spectra analysis for Ba[(Mg1−xNix)1/3Nb2/3]O3 microwave dielectric ceramics. AIP Adv. 5(1), 114103 (2015)

    Article  Google Scholar 

  38. A.D. Arulsamy, Renormalization group method based on the ionization energy theory. Ann. Phys. 326(3), 541–565 (2011)

    Article  Google Scholar 

  39. B. Liu, K.X. Song, Vibrational spectroscopy and microwave dielectric properties of two novel Ca3Ln2W2O12 (ln = La, Sm) tungstate ceramics. Mater. Res. Bull. 133, 111022 (2021)

    Article  CAS  Google Scholar 

  40. G. Santosh Babu, V. Subramanian, V.R.K. Murthy, R.L. Moreira, R.P.S.M. Lobo, Crystal structure, Raman spectroscopy, far-infrared, and microwave dielectric of (1 – x)La(MgSn)0.5O3–xNd(MgSn)0.5O3 system. J. Appl. Phys. 103, 084104 (2008)

    Article  Google Scholar 

  41. H.H. Guo, D. Zhou, L.X. Pang, Z.M. Qi, Microwave dielectric properties of low firing temperature stable scheelite structured (Ca,Bi)(Mo,V)O4 solid solution ceramics for LTCC applications. J. Eur. Ceram. Soc. 39(7), 2365–2373 (2019)

    Article  CAS  Google Scholar 

  42. J. Bi, C. Yang, H. Wu, Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1–xMnxZrNb2O8 (0.02 ≤ x ≤ 0.1) ceramics. Ceram. Int. 43(1), 92–98 (2017)

    Article  CAS  Google Scholar 

  43. L. Glasser, H.D.B. Jenkins, Lattice energies and unit cell volumes of complex Ionic solids. J. Am. Chem. Soc. 122, 632–638 (2000)

    Article  CAS  Google Scholar 

  44. E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30(7), 1731–1736 (2010)

    Article  CAS  Google Scholar 

  45. Y. Lai, X. Tang, X. Huang, H. Zhang, X. Liang, J. Li, H. Su, Phase composition, crystal structure and microwave dielectric properties of Mg2–xCuxSiO4 ceramics. J. Eur. Ceram. Soc. 38(4), 1508–1516 (2018)

    Article  CAS  Google Scholar 

  46. A.J. Bosman, E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129(4), 1593–1600 (1963)

    Article  CAS  Google Scholar 

  47. M. Wu, Y. Zhang, J. Chen, M. Xiang, Microwave dielectric properties of sol–gel derived NiZrNb2O8 ceramics. J. Alloys Compd. 747, 394–400 (2018)

    Article  CAS  Google Scholar 

  48. E.S. Kim, C.J. Jeon, S. JooKim, S.J. Kim, Effects of crystal structure on microwave dielectric properties of ceramics. J. Korean Ceram. 45, 251–255 (2008)

    Article  CAS  Google Scholar 

  49. S.D. Rama Rao, S. Roopas Kiran, V.R.K. Murthy, P. Davies, Correlation between structural characteristics and microwave dielectric properties of scheelite Ca1 – xCdxMoO4 solid solution. J. Am. Ceram. Soc. 95(11), 3532–3537 (2012)

    Article  Google Scholar 

  50. N.E. BRESE, M. O’KEEFFE, Bond-valence parameters for solids. Acta Cryst. Sect. B 47, 192–197 (1991)

    Article  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of China (Nos. 61761015), the Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001, and 2017GXNSFDA198027), and the High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XW, YH, XC and HZ. The first draft of the manuscript was written by XW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huanfu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., He, Y., Chen, X. et al. Relationship between microstructure and microwave dielectric properties of glass-free low temperature co-fired CaLa2(MoO4)4 ceramic. J Mater Sci: Mater Electron 34, 1738 (2023). https://doi.org/10.1007/s10854-023-11175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11175-2

Navigation