Skip to main content
Log in

Multifaceted analysis of PbO–Bi2O3–ZnO–B2O3 glasses: unveiling structural, Optical, and gamma-ray shielding behaviour

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication process of PbO–Bi2O3–ZnO–B2O3(PBZB) glasses involved the application of a melt quenching technique. The glass samples were revealed through X-ray diffraction (XRD) analysis to be amorphous in nature. Fourier-transform infrared (FTIR) spectra, ranging from 4000 to 400 cm−1, exhibited peaks and bands indicating bending and stretching vibrations associated with the constituent groups in the glasses. The Raman spectra indicated that non-bridging oxygens (NBOs) formed with PbO’s incorporation into the network. To investigate the UV–Vis spectra of the glass, the Derivation of Absorption Spectrum Fitting (DASF) method was employed. This analysis predicted a decrease in energy band gap values, which was attributed to the increased presence of NBOs within the glass network. The prepared glasses’ radiation-shielding properties were reported using Phy-X software in the range of 0.284–1.333 MeV, where it was found that the mass attenuation coefficient (MAC) follows the order of PBZB1 < PBZB2 < PBZB3 < PBZB4, which means a positive correlation of the samples’ MAC with the glasses’ PbO content, or an inverse correlation with the glasses’ B2O3 content. Thus, the sample characterized by the highest content of PbO, or the least B2O3 content, has the greatest radiation shielding ability. The ratio between the tenth value layer for the PBZB1 and PBZB4 samples was estimated, with the results demonstrating the ratio to be higher than one, thus indicating that PBZB1’s TVL is always greater than PBZB4’s TVL. From the ratio between the TVL, we found that the addition of PbO causes a reduction in the thickness of the glass that is needed to attenuate the incoming photons. The PBZB4 sample (which contains 70 mol% of PbO) has the greatest advantage over the other materials in the glass system at lower and higher energies, while having a slightly reduced advantage at medium energies. PBZB4 possesses the lowest HVL value, thus qualify as the best shielding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F.I. El-Agawany, K.A. Mahmoud, H. Akyildirim, E. Yousef, H.O. Tekin, Y.S. Rammah, Physical, neutron, and gamma-rays shielding parameters for Na2O–SiO2–PbO glasses. Emerg. Mater. Res. 10, 1–9 (2021)

    Google Scholar 

  2. D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, A. Kumar, D.K. Gaikwad, D.I. Tishkevich, A.V. Trukhanov, Experimental and theoretical analysis of radiation shielding properties of strontium-borate-tellurite glasses. Opt. Mater. 121, 111589 (2021)

    Article  CAS  Google Scholar 

  3. M. Dong, S. Zhou, X. Xue, X. Feng, H. Yang, M.I. Sayyed, D. Tishkevich, A. Trukhanov, N. Almous, Upcycling of boron bearing blast furnace slag as highly cost-effective shield for protection of neutron radiation hazard: an innovative way and proposal of shielding mechanism. J. Clean. Prod. 355, 131817 (2022)

    Article  CAS  Google Scholar 

  4. S. Kim, Y. Ahn, S.H. Song, D. Lee, Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nano composites for complex radiation shielding. Comp. Sci. Tech. 221, 109353 (2022)

    Article  CAS  Google Scholar 

  5. D.I. Tishkevich, T.I. Zubar, A.; Zhaludkevich, I.U. Razanau, A.A. Tatiana, T. Vershinina, A.A. Bondaruk, E.K. Zheleznova, M.D. Mohamed, M.Y. Hanfi, M.I. Sayyed, M.V. Silibin, S.V. Trukhanov, Isostatic hot pressed W-Cu composites with nanosized grain boundaries: microstructure, structure and radiation shielding efficiency against gamma rays. Nanomaterials 12, 1642 (2022). https://doi.org/10.3390/nano12101642

    Article  CAS  Google Scholar 

  6. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl. Phys. A 127, 265 (2021)

    Article  CAS  Google Scholar 

  7. B. Aygün, Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo simulation technique. Radiat. Phys. Chem. 188, 109630 (2021)

    Article  Google Scholar 

  8. S. Yasmin, M. Kamislioglu, M.I. Sayyed, Assessment of radiation shielding performance of Li2O–BaO–Bi2O3–P2O5 glass systems within the energy range from 0.081 MeV to 1.332 MeV via MCNP6 code. Optik 274, 170529 (2023)

    Article  CAS  Google Scholar 

  9. M.T. Alabsy, J.S. Alzahrani, M.I. Sayyed, D.I. Tishkevich, M.I. Abbas, A.M. El-Khatib, M. Elsafi, Gamma-ray attenuation and exposure buildup factor of novel polymers in shielding using Geant4 simulation. Materials 14, 5051 (2021). https://doi.org/10.3390/ma14175051

    Article  CAS  Google Scholar 

  10. A.V. Trukhanov, A.L. Kozlovskiy, A.E. Ryskulov, V.V. Uglov, S.B. Kislitsin, M.V. Zdorovets, S.V. Trukhanov, T.I. Zubar, K.A. Astapovich, D.I. Tishkevich, Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceram. Int. 45, 15412–15416 (2019)

    Article  CAS  Google Scholar 

  11. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik. 251, 168436 (2022)

    Article  CAS  Google Scholar 

  12. W. Chaiphaksa, P. Borisut, N. Chanthima, J. Kaewkhao, N.W. Sanwaranatee, Mathematical calculation of gamma rays interaction in bismuth gadolinium silicate glass using WinXCom program. Mater. Today Proc. 65, 2412–2415 (2022)

    Article  CAS  Google Scholar 

  13. A. Sharma, M.I. Sayyed, O. Agar, H.O. Tekin, Simulation of shielding parameters for TeO2–WO3–GeO2 glasses using FLUKA code. Res. Phys. 13, 102199 (2019)

    Google Scholar 

  14. M.I. Sayyed, M.H.A. Mhareb, Y.S.M. Alajerami, K.A. Mahmoud, M.A. Imheidat, F. Alshahri, M. Alqahtani, T. Al-Abdullah, Optical and radiation shielding features for a new series of borate glass samples. Optik. 239, 166790 (2021)

    Article  CAS  Google Scholar 

  15. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2–ZnO–NiO glasses. Mater. Chem. Phys. 212, 12–20 (2018)

    Article  CAS  Google Scholar 

  16. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, K.A. Mahmoud, I. Akkurt, E.S. Yousef, Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses. Opt. Mater. 114, 110897 (2021)

    Article  CAS  Google Scholar 

  17. M. Kamislioglu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Res. Phys. 22, 103844 (2021)

    Google Scholar 

  18. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3–CaO–B2O3–SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019)

    Article  CAS  Google Scholar 

  19. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)

    Article  CAS  Google Scholar 

  20. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3–BaO–Na2O–MgO–B2O3 glass systems. Prog. Nucl. Energ. 118, 103118 (2020)

    Article  CAS  Google Scholar 

  21. H. Al-Ghamdi, A.H. Almuqrin, M.I. Sayyed, A. Kumar, The physical, structural and the gamma ray shielding effectiveness of the novel Li2O–K2O–B2O3–TeO2 glasses. Res. Phys. 29, 104726 (2021)

    Google Scholar 

  22. D.A. Aloraini, M.I. Sayyed, A.H. Almuqrin, A. Kumar, T.H. Khazaalah, S. Yasmin, M.U. Khandaker, S.O. Baki, Preparation, radiation shielding and mechanical characterization of PbO–TeO2–MgO–Na2O–B2O3 glasses. Radiat. Phys. Chem. 198, 110254 (2022)

    Article  CAS  Google Scholar 

  23. H. Al-Ghamdi, A. Kumar, J.F.M. Jecong, A.H. Almuqrin, D.I. Tishkevich, M.I. Sayyed, Optical and gamma ray shielding behavior of PbO–B2O3–CuO–CaO glasses. J. Mater. Res. Tech. 18, 2494–2505 (2022)

    Article  CAS  Google Scholar 

  24. M.I. Sayyed, A. Kumar, B.O. El-bashir, K.A. Mahmoud, M.H.M. Zaid, H.A.A. Sidek, K.A. Matori, Investigation of the mechanical and radiation shielding features for BaO–WO3–P2O5 glass systems. Optik 258, 168810 (2022)

    Article  CAS  Google Scholar 

  25. M.I. Sayyed, R. Kurtulus, O.I. Olarinoye, A.H. Almuqrin, A. Kumar, T. Kavas, Mechanical and photon shielding aspects of PbO–BaO–WO3–Na2O–B2O3 glass systems. Appl. Phys. A 127, 747 (2021)

    Article  CAS  Google Scholar 

  26. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119, 273–279 (2015)

    Article  CAS  Google Scholar 

  27. B.M. Alotaibi, M.I. Sayyed, A. Kumar, M. Alotiby, K.A. Mahmoud, H.A. Al-Yousef, N.A.M. Alsaif, Y. Al-Hadeethi, Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties. Eur. Phys. J. Plus. 136, 468 (2021)

    Article  CAS  Google Scholar 

  28. A.H. Almuqrin, M.I. Sayyed, S. Hashim, A. Kumar, Exploring the impact of PbO/CdO composition on the structural, optical, and gamma ray shielding properties of dense PbO–TeO2–CdO glasses. Opt. Mater. 138, 113698 (2023)

    Article  CAS  Google Scholar 

  29. E. Şakar, Ã.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  30. R. Nagaraju, B. Devaiah, L. Haritha, K. C.Sekhar, M. Shareefuddin, M.A. Sayed, G. Lalitha, K.V. Kumar, Influence of CaF2 on spectroscopic studies of lead fluoro bismuth borate glasses doped with Cr3+ ions. J. Non-Cryst. Solid 560, 120705 (2021)

    Article  CAS  Google Scholar 

  31. A.A. Abul-Magd, H.Y. Morshidy, A.M. Abdel-Ghany, The role of NiO on the structural and optical properties of sodium zinc borate glasses. Opt. Mater. 109, 110301 (2020)

    Article  CAS  Google Scholar 

  32. S.K. Lenkennavar, M.K. Kokila, B. Eraiah, Spectroscopic investigation of different nano metals doped to lead sodium calcium borate glasses. Mater. Today Proc. 26, 1167–1174 (2020)

    Article  CAS  Google Scholar 

  33. S.M. Abo-Naf, FTIR and UV–VIS optical absorption spectra of gamma-irradiated MoO3-doped lead borate glasses. J. Non-Cryst. Solid 358, 406–413 (2012)

    Article  CAS  Google Scholar 

  34. B. Shanmugavelu, V.V.R.K. Kumar, Thermal, structural and electrical studies of bismuth zinc borate glasses. Solid. State Sci. 20, 59–64 (2013)

    Article  CAS  Google Scholar 

  35. H.A. ElBatal, A.M. Abdelghany, I.S. Ali, Optical and FTIR studies of CuO-doped lead borate glasses and effect of gamma irradiation. J. Non-Cryst. Solid 358, 820–825 (2012)

    Article  CAS  Google Scholar 

  36. S. Bale, S. Rahman, Spectroscopic and physical properties of Bi2O3–B2O3–ZnO–Li2O glasses. Int. Sch. Res. Not. (2012). https://doi.org/10.5402/2012/634571

    Article  Google Scholar 

  37. K. Kotkova, H. Ticha, L. Tichy, Raman studies and optical properties of some (PbO)x(Bi2O3)0.2(B2O3)0.8–x glasses. J. Raman Spectrosc. 39, 1219–1226 (2008)

    Article  CAS  Google Scholar 

  38. J. Leciejewicz, Neutron-diffraction study of orthorhombic lead monoxide. Acta Crystallogr. 14, 66 (1961)

    Article  CAS  Google Scholar 

  39. A.A. Kharlamov, R.M. Almeida, J. Heo, Vibrational spectra and structure of heavy metal oxide glasses. J. Non-Cryst. Solid 202, 233–240 (1996)

    Article  CAS  Google Scholar 

  40. H. Ticha, M. Kincl, L. Tichy, Some structural and optical properties of (Bi2O3)x(ZnO)60–x(B2O3)40 glasses. Mater. Chem. Phys. 138, 633–639 (2013)

    Article  CAS  Google Scholar 

  41. K. Knoblochova, H. Ticha, J. Schwarz, L. Tichy, Raman spectra and optical properties of selected Bi2O3–PbO–B2O3–GeO2 glasses. Opt. Mater. 31, 895–898 (2009)

    Article  CAS  Google Scholar 

  42. M. Nocun, W. Mozgawa, J. Jedlinski, J. Najman, Structure and optical properties of glasses from Li2O–Bi2O3–PbO system. J. Mol. Struct. 744, 603–607 (2005)

    Article  Google Scholar 

  43. B.N. Meera, J. Ramakrishna, Raman spectral studies of borate glasses. J. Non-Cryst. Solid 159, 1–21 (1993)

    Article  CAS  Google Scholar 

  44. R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4 C code, XCOM program, and available experimental data. Nucl. Eng. Tech. 49, 216–223 (2017)

    Article  Google Scholar 

  45. A. Acikgoz, G. Demircan, D. Yılmaz, B. Aktas, S. Yalcin, N. Yorulmaz, Structural, mechanical, radiation shielding properties and albedo parameters of alumina borate glasses: role of CeO2 and Er2O3. Mater. Sci. Eng. B 276, 115519 (2022)

    Article  CAS  Google Scholar 

  46. M. Zubair, E. Ahmed, D. Hartanto, Comparison of different glass materials to protect the operators from gamma-rays in the PET using MCNP code. Radiat. Phys. Chem. 190, 109818 (2022)

    Article  CAS  Google Scholar 

  47. I.G. Geidam, K.A. Matori, M.K. Halimah, K.T. Chan, F.D. Muhammad, M. Ishak, S.A. Umar, Oxide ion polarizabilities and gamma radiation shielding features of TeO2–B2O3–SiO2 glasses containing Bi2O3 using Phy-X/PSD software. Mater. Today Commun. 31, 103472 (2022)

    Article  CAS  Google Scholar 

  48. W. Cheewasukhanont, P. Limkitjaroenporn, M.I. Sayyed, S. Kothan, H.J. Kim, J. Kaewkhao, High density of tungsten gadolinium borate glasses for radiation shielding material: effect of WO3 concentration. Radiat. Phys. Chem. 192, 109926 (2022)

    Article  CAS  Google Scholar 

  49. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. (2014). https://doi.org/10.1016/j.radphyschem.2013.09.015

    Article  Google Scholar 

  50. R.S. Kaundal, S. Kaur, N. Singh, K.J. Singh, Investigation of structural properties of lead strontium borate glasses for gamma-ray shielding applications. J. Phys. Chem. Solids. 71, 1191–1195 (2010)

    Article  CAS  Google Scholar 

  51. D.K. Ashok Kumar, S.S. Gaikwad, H.O. Obaid, O. Tekin, M.I. Agar, Sayyed, Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30 + x)PbO–10WO3–10Na2O–10MgO–(40-x)B2O3 glasses. Prog. Nucl. Energy 119, 10304 (2020)

    Google Scholar 

Download references

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R13), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

JSA-O: Validation, Visualization, Project administration, Funding acquisition AHA: Software, Investigation, Writing—Review & Editing, Supervision MIS: Methodology, Validation, Formal analysis, Visualization, Writing—Original Draft AK: Methodology, Validation, Visualization, Conceptualization, Writing—Original Draft.

Corresponding author

Correspondence to Ashok Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Otaibi, J.S., Almuqrin, A.H., Sayyed, M.I. et al. Multifaceted analysis of PbO–Bi2O3–ZnO–B2O3 glasses: unveiling structural, Optical, and gamma-ray shielding behaviour. J Mater Sci: Mater Electron 34, 1721 (2023). https://doi.org/10.1007/s10854-023-11166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11166-3

Navigation