Skip to main content
Log in

Design and modeling of a planar 2D nanostructured intermediate layer for light management in a very-thin SHJ bottom cell based monolithic perovskite/silicon tandem solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present an optical simulation for a very-thin (60 μm) SHJ (silicon heterojunction cell) bottom cell based planar monolithic perovskite/silicon tandem solar cell incorporated with an intermediate reflector layer (IRL) in between the top and the bottom sub-cell to study the light management. The simulation was performed in a commercial software called Ansys Lumerical FDTD Solver. In this study, the tandem solar cell was simulated by incorporating a TFOR (topologically flat but optically rough) IRL of different periods, a DBR (distributed Bragg reflector) IRL, and a combination of (TFOR + DBR) IRL in the intermediate region to check the optical absorptance enhancement in the top and the bottom sub-cells, and, also the reflectance spectrum of the tandem solar cell. The tandem solar cell incorporated with a TFOR IRL was simulated for a range of top cell thicknesses, keeping the bottom cell thickness 60 μm (fixed); aiming to use as a flexible tandem solar cell. This exhibits a current density (Jsc) enhancement in the bottom sub-cell due to the incorporation of TFOR IRL, with a maximum for 500 nm period TFOR. However, the current density of the top sub-cell remains unchanged. The closest Jsc of both the top and the bottom sub-cells reaching the current-match condition is found in the tandem solar cell incorporated with a 500 nm period TFOR IRL. For the PIN based perovskite (500 nm)/silicon (60 μm) tandem solar cells, the maximum current density enhancement in the bottom sub-cell resulting from the incorporation of a 500 nm period TFOR IRL is 0.43 mA/cm2. However, a DBR IRL or (TFOR + DBR) IRL incorporation in the tandem solar cell could not improve the current density of the bottom sub-cells. Instead, it increases the current density in the top sub-cells. Moreover, a current density loss was also analyzed in the TFOR IRL which shows that the current density loss decreases by increasing the TFOR period and a maximum loss is at 200 nm period. Further, an electric field analysis was also done in the top and the bottom sub-cells at peak absorption wavelengths, which shows that the electric field is more concentrated in the bottom sub-cell due to TFOR IRL, confirming the forward scattering of light in the tandem solar cell incorporated with TFOR IRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

All the data generated or analysed during this study are included in the article (also the supplementary information files).

References

  1. “Photovoltaics report”, prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH. Press release 21 February 2023. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

  2. A. Richter, M. Hermle, S.W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013)

    Article  Google Scholar 

  3. At 26.81%, LONGI sets a new world record efficiency for silicon solar cells. Press Release, 19 November 2022. https://www.longi.com/en/news/propelling-the-transformation/

  4. S. Kim, T.T. Trinh, J. Park, D.P. Pham, S. Lee, H.B. Do, N.N. Dang, V.A. Dao, J. Kim, J. Yi, Over 30% efficiency bifacial 4-terminal perovskite-heterojunction silicon tandem solar cells with spectral albedo. Sci. Rep. 11, 15524 (2021)

    Article  CAS  Google Scholar 

  5. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3, 305–306 (2018)

    Article  CAS  Google Scholar 

  6. D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song, C.R. Grice, Y. Yu, C. Li, B. Subedi, N.J. Podraza et al., Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018)

    Article  CAS  Google Scholar 

  7. L. Yan, Y. Li, B. Shi, Y. Li, Q. Xu, B. Zhang, Y. Chen, W. Han, N. Ren, Q. Huang et al., Reducing electrical losses of textured monolithic perovskite/silicon tandem solar cells by tailoring nanocrystalline silicon tunneling recombination junction. Sol. Energy Mater. Sol. Cells 245, 111868 (2022)

    Article  CAS  Google Scholar 

  8. F. Sahli, B.A. Kamino, J. Werner, M. Bräuninger, B. Paviet-Salomon, L. Barraud, R. Monnard, J.P. Seif, A. Tomasi, Q. Jeangros et al., Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction. Adv. Energy Mater. 8, 1701609 (2018)

    Article  Google Scholar 

  9. M. De Bastiani, A.S. Subbiah, E. Aydin, F.H. Isikgor, T.G. Allen, S. De Wolf, Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects. Mater. Horizons 7, 2791–2809 (2020)

    Article  Google Scholar 

  10. LONGi reached efficiency of 33.5% for its perovskite/crystalline silicon tandem solar cells based on commercial CZ silicon wafers. Press Release 13 June 2023. https://www.longi.com/en/distributorbriefing/longi-reached-33.5-efficiency-for-perovskite-crystallinesilicon-tandem-solar-cells/

  11. Y. Zhou, Y.H. Jia, H.H. Fang, M.A. Loi, F.Y. Xie, L. Gong, M.C. Qin, X.H. Lu, C.P. Wong, N. Zhao, Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28, 1803130 (2018)

    Article  Google Scholar 

  12. K.A. Bush, K. Frohna, R. Prasanna, R.E. Beal, T. Leijtens, S.A. Swifter, M.D. McGehee, Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 3, 428–435 (2018)

    Article  CAS  Google Scholar 

  13. A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839–846 (1980)

    Article  Google Scholar 

  14. F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard, B. Paviet-salomon, L. Barraud, L. Ding, J.J.D. Leon, D. Sacchetto et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820 (2018)

    Article  CAS  Google Scholar 

  15. E. Köhnen, M. Jošt, A.B. Morales-Vilches, P. Tockhorn, A. Al-Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, R. Schlatmann et al., Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance. Sustain. Energy Fuels 2019, 3 (1995)

    Google Scholar 

  16. M. Jošt, E. Köhnen, A.B. Morales-Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al-Ashouri, J. Krč, L. Korte, B. Rech et al., Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ. Sci. 11, 3511–3523 (2018)

    Article  Google Scholar 

  17. B.W. Schneider, N.N. Lal, S. Baker-Finch, T.P. White, Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express 22, A1422 (2014)

    Article  CAS  Google Scholar 

  18. D. Shi, Y. Zeng, W. Shen, Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping. Sci. Rep. 5, 16504 (2015)

    Article  Google Scholar 

  19. R. Santbergen, R. Mishima, T. Meguro, M. Hino, H. Uzu, J. Blanker, K. Yamamoto, M. Zeman, Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. Opt. Express 24, A1288 (2016)

    Article  CAS  Google Scholar 

  20. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016)

    Article  CAS  Google Scholar 

  21. J. Borchert, R.L. Milot, J.B. Patel, C.L. Davies, A.D. Wright, L. Martínez Maestro, H.J. Snaith, L.M. Herz, M.B. Johnston, Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells. ACS Energy Lett. 2, 2799–2804 (2017)

    Article  CAS  Google Scholar 

  22. L. Mazzarella, Y.H. Lin, S. Kirner, A.B. Morales-Vilches, L. Korte, S. Albrecht, E. Crossland, B. Stannowski, C. Case, H.J. Snaith et al., Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9, 1803241 (2019)

    Article  Google Scholar 

  23. Sai, H.; Umishio, H.; Matsui, T. Very thin (56 μm) silicon heterojunction solar cells with an efficiency of 23.3% and an open-circuit voltage of 754 mV. Sol. RRL 2021, 5, 2100634.

  24. O. Isabella, S. Dobrovolskiy, G. Kroon, M. Zeman, Design and application of dielectric distributed Bragg back reflector in thin-film silicon solar cells. J. Non. Cryst. Solids 358, 2295–2298 (2012)

    Article  CAS  Google Scholar 

  25. S. Uddin, C. Vijayan, J.K. Rath, Optical modelling of photonic and geometrical structures used for light management in thin-film solar cells. Mater. Today Proc. 39, 1974–1977 (2019)

    Article  Google Scholar 

  26. D.V. Prashant, D.P. Samajdar, Z. Arefinia, FDTD-based optimization of geometrical parameters and material properties for GaAs-truncated nanopyramid solar cells. IEEE Trans. Electron Devices 68, 1135–1141 (2021)

    Article  CAS  Google Scholar 

  27. M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H.W. Choi, J. Lee et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020)

    Article  CAS  Google Scholar 

  28. F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S.H. Jang et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020)

    Article  CAS  Google Scholar 

  29. Refractive index library. https://www.pvlighthouse.com.au/refractive-index-library

  30. S. Manzoor, J. Häusele, K.A. Bush, A.F. Palmstrom, J. Carpenter, Z.J. Yu, S.F. Bent, M.D. Mcgehee, Z.C. Holman, Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Opt. Express 26, 27441 (2018)

    Article  CAS  Google Scholar 

  31. P. Spinelli, A. Polman, Light trapping in thin crystalline Si solar cells using surface mie scatterers. IEEE J. Photovolt. 4, 554–559 (2014)

    Article  Google Scholar 

  32. A. Bielawny, J. Üpping, P.T. Miclea, R.B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.M. Lee et al., 3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell. Phys. Status Solidi Appl. Mater. Sci. 205, 2796–2810 (2008)

    Article  CAS  Google Scholar 

  33. J. Krc, F. Smole, M. Topic, Optical simulation of the role of reflecting interlayers in tandem micromorph silicon solar cells. Sol. Energy Mater. Sol. Cells 86, 537–550 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

The author would like to thank Department of Physics, IIT Madras, and DSEHC, a center funded by Department of science and technology (DST), Government of India, through grant No. DST/TMD/SERI/HUB/1(C), for funding to this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MSU; methodology, MSU; software, MSU; validation, MSU, CV and JKR; formal analysis, MSU, CV and JKR; data curation, MSU; writing—original draft preparation, MSU; writing—review and editing, MSU, CV, JKR; supervision, CV and JKR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to J. K. Rath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 784 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.S., Vijayan, C. & Rath, J. Design and modeling of a planar 2D nanostructured intermediate layer for light management in a very-thin SHJ bottom cell based monolithic perovskite/silicon tandem solar cell. J Mater Sci: Mater Electron 34, 1753 (2023). https://doi.org/10.1007/s10854-023-11163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11163-6

Navigation