Skip to main content

Advertisement

Log in

Achieving high energy-storage density in K0.5Na0.5NbO3 optimized Bi0.25Na0.25Ba0.15Sr0.35TiO3 relaxor ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free ceramics with high energy-storage density and dielectric stability are attracted considerable attention to address low-driven energy storage electronic fields. Here, the Bi0.25Na0.25Ba0.15Sr0.35TiO3 + K0.5Na0.5NbO3 (BNBST + Kx, x = 0, 2, 4, 6, 8, 10) ceramics were constructed to systematically investigate. All BNBST + Kx ceramics exhibited single pseudocubic perovskite structure with high bulk density. High energy storage density Wtotal = 2.3 J/cm3, recoverable energy storage density Wrec = 1.91 J/cm3 and efficiency η = 84% under 117 kV/cm were achieved at x = 4, and the value of 1.91 J/cm3 was superior compared with most Wrec in lead-free bulk ceramics under a relatively low electric field (< 150 kV/cm), while the dielectric temperature stability was boosted to meet wider working window. Moreover, the BNBST + K4 ceramics displayed satisfactory frequency (1–100 Hz), anti-fatigue (1–104 cycle times) and temperature (20–200 °C) dependent energy storage stability, which might be a powerful contender for low-voltage driven ceramic capacitors of high energy-storage density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current work are available from the corresponding author on reasonable request.

References

  1. H. Peddigari, M. Palneedi, G.T. Hwang, J. Ryu, Adv. Funct. Mater. 28(42), 1803665 (2018)

    Article  Google Scholar 

  2. D.X. Li, X.J. Zeng, Z.P. Li, Z.Y. Shen, H. Hao, W.Q. Luo, X.C. Wang, F.S. Song, Z.M. Wang, Y.M. Li, J. Adv. Ceram. 10(4), 675–703 (2021)

    Article  CAS  Google Scholar 

  3. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. Lanagan, H. Liu, Adv. Mater. 29(20), 1601727 (2017)

    Article  Google Scholar 

  4. B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4(9), 3287–3295 (2011)

    Article  CAS  Google Scholar 

  5. G.F. Smaisim, A.M. Abed, H. Al-Madhhachi, S.K. Hadrawi, H.M.M. Al-Khateeb, E. Kianfar, BioNanoScience 13(1), 219–248 (2023)

    Article  Google Scholar 

  6. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Chem. Rev. 121(10), 6124–6172 (2021)

    Article  CAS  Google Scholar 

  7. P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang, J. Adv. Ceram. 10, 1153–1193 (2021)

    Article  CAS  Google Scholar 

  8. A. Burke, Appl. Sci. 11(17), 8063 (2021)

    Article  CAS  Google Scholar 

  9. Z.P. Li, D.X. Li, Z.Y. Shen, X.J. Zeng, F.S. Song, W.Q. Luo, X.C. Wang, Z.M. Wang, Y.M. Li, J. Adv. Ceram. 11(2), 283–294 (2022)

    Article  CAS  Google Scholar 

  10. Y. Wang, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Ceram. Int. 41(6), 8252–8256 (2015)

    Article  CAS  Google Scholar 

  11. X. Luo, J. Zeng, X. Shi, L. Zheng, K. Zhao, Z. Man, G. Li, Ceram. Int. 44(7), 8456–8460 (2018)

    Article  CAS  Google Scholar 

  12. A. Kumar, J.Y. Yoon, A. Thakre, M. Peddigari, D.Y. Jeong, Y.M. Kong, J. Ryu, J. Korean Ceram. Soc. 56(4), 412–420 (2019)

    Article  CAS  Google Scholar 

  13. T. Takenaka, K.O. Sakata, K.O. Toda, Ferroelectrics 106(1), 375–380 (1990)

    Article  CAS  Google Scholar 

  14. J. Suchanicz, K. Kluczewska-Chmielarz, D. Sitko, G. Jaglo, J. Adv. Ceram. 10(1), 152–165 (2021)

    Article  CAS  Google Scholar 

  15. X. Li, X. Dong, F. Wang, Z. Tan, Q. Zhang, H. Chen, J. Xi, J. Xing, H. Zhou, J. Zhu, J. Eur. Ceram. Soc. 42(5), 2221–2229 (2022)

    Article  CAS  Google Scholar 

  16. Y. Liu, Y. Ji, Y. Yang, Nanomaterials 11(7), 1724 (2021)

    Article  CAS  Google Scholar 

  17. F. Yan, K. Huang, T. Jiang, X. Zhou, Y. Shi, G. Ge, B. Shen, J. Zhai, Energy Storage Mater. 30, 392–400 (2020)

    Article  Google Scholar 

  18. Y. Wu, G. Wang, Z. Jiao, Y. Fan, P. Peng, X. Dong, RSC Adv. 9(37), 21355–21362 (2019)

    Article  CAS  Google Scholar 

  19. H. Qi, R. Zuo, J. Mater. Chem. A 7(8), 3971–3978 (2019)

    Article  CAS  Google Scholar 

  20. D.X. Li, Z.Y. Shen, Z.P. Li, X.C. Wang, W.Q. Luo, F.S. Song, Z.M. Wang, Y.M. Li, J. Mater. Sci. Mater. Electron. 31, 3648–3653 (2020)

    Article  CAS  Google Scholar 

  21. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, X.C. Wang, Z.M. Wang, F.S. Song, Y.M. Li, J. Adv. Ceram. 9(2), 183–192 (2020)

    Article  CAS  Google Scholar 

  22. O. Tokay, M. Yazici, Mater. Today Commun. 31, 103358 (2022)

    Article  CAS  Google Scholar 

  23. X. Lv, J. Wu, J. Mater. Chem. C 7(7), 2037–2048 (2019)

    Article  CAS  Google Scholar 

  24. Z. Dai, D. Li, Z. Zhou, S. Zhou, W. Liu, J. Liu, X. Wang, X. Ren, Chem. Eng. J. 427, 131959 (2022)

    Article  CAS  Google Scholar 

  25. S. Li, L. Chen, X. Ning, M. Guo, M. Zhang, Ceram. Int. 41(1), 195–204 (2015)

    Article  CAS  Google Scholar 

  26. W. Qi, J. Cao, Z. Li, Y. Wang, Ferroelectrics 577(1), 229–235 (2021)

    Article  CAS  Google Scholar 

  27. G. Viola, H. Ning, M.J. Reece, R. Wilson, T.M. Correia, P. Weaver, M.G. Cain, H. Yan, J. Phys. D 45(35), 355302 (2012)

    Article  Google Scholar 

  28. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A 4(36), 13778–13785 (2016)

    Article  CAS  Google Scholar 

  29. Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai, J. Mater. Chem. C 7(14), 4072–4078 (2019)

    Article  CAS  Google Scholar 

  30. X. Shi, K. Li, Z.Y. Shen, J. Liu, C. Chen, X. Zeng, B. Zhang, F. Song, W. Luo, Z. Wang, Y. Li, J. Adv. Ceram. 12(4), 695–710 (2023)

    Article  CAS  Google Scholar 

  31. W. Bai, Y. Bian, J. Hao, B. Shen, J. Zhai, J. Am. Ceram. Soc. 96(1), 246–252 (2013)

    Article  CAS  Google Scholar 

  32. W. Zhu, H. Guo, Z.Y. Shen, F. Song, W. Luo, Z. Wang, Y. Li, J. Am. Ceram. Soc. 106(6), 3633–3642 (2023)

    Article  CAS  Google Scholar 

  33. A. Prado, F. Rubio-Marcos, L. Ramajo, M.S. Castro, Bull. Mater. Sci. 43, 1–9 (2020)

    Article  Google Scholar 

  34. N. Thongmee, T. Klaytae, N. Vittayakorn, T. Bongkarn, R. Sumang, Integr. Ferroelectr. 223(1), 235–245 (2021)

    Article  Google Scholar 

  35. J. Sui, H. Fan, H. Peng, J. Ma, A.K. Yadav, W. Chao, M. Zhang, G. Dong, Ceram. Int. 45(16), 20427–20434 (2019)

    Article  CAS  Google Scholar 

  36. W. Zhu, W. Deng, Z. Li, Z.Y. Shen, X. Shi, F. Song, W. Luo, Z. Wang, Y. Li, J. Mater. Sci. Mater. Electron. 33(36), 26861–26869 (2022)

    Article  CAS  Google Scholar 

  37. Y. Wang, Y. Pu, P. Zhang, J. Alloys Compd. 653, 596–603 (2015)

    Article  CAS  Google Scholar 

  38. M. Chandrasekhar, P. Kumar, C. Prakash, A. Kumar, Ferroelectrics 517(1), 58–65 (2017)

    Article  CAS  Google Scholar 

  39. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, F.S. Song, X.C. Wang, Z.M. Wang, Y.M. Li, J. Mater. Chem. C 8, 7650–7657 (2020)

    Article  CAS  Google Scholar 

  40. R. Kang, Z. Wang, W. Liu, L. He, X. Zhu, P. Shi, X. Zhang, L. Zhang, X. Lou, ACS Appl. Mater. Interfaces 13(21), 25143–25152 (2021)

    Article  CAS  Google Scholar 

  41. X. Qiao, D. Wu, F. Zhang, M. Niu, B. Chen, X. Zhao, P. Liang, L. Wei, X. Chao, Z. Yang, J. Eur. Ceram. Soc. 39(15), 4778–4784 (2019)

    Article  CAS  Google Scholar 

  42. A.K. Yadav, I.R. Yoo, S.H. Choi, J.Y. Park, H.C. Song, K.H. Cho, J. Alloys Compd. 923, 166324 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Graduate Innovation Fund of Jiangxi Province (YC2022-S884).

Author information

Authors and Affiliations

Authors

Contributions

WZ and YZ: project administration, conceptualization, methodology, writing, contributed equally to the manuscript. XZ: methodology and manuscript revision, assist in data handling.

Corresponding author

Correspondence to Wen Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhou, Y. & Zhang, X. Achieving high energy-storage density in K0.5Na0.5NbO3 optimized Bi0.25Na0.25Ba0.15Sr0.35TiO3 relaxor ferroelectric ceramics. J Mater Sci: Mater Electron 34, 1700 (2023). https://doi.org/10.1007/s10854-023-11161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11161-8

Navigation