Skip to main content
Log in

Effect of cover annealing on Cu2SnS3 thin films deposited by dual-source fine-channel mist chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the quality and obtain single-phase monoclinic Cu2SnS3 (CTS) thin films, precursors, which were deposited by a non-vacuum dual-source fine-channel mist chemical vapor deposition (CVD) process, were annealed by covering them with a soda lime glass (SLG) substrate or other precursors. After annealing with a cover, the annealed precursor showed X-ray diffraction (XRD) peaks attributable only to monoclinic CTS; however, the chemical composition of the annealed precursor covered by other types of precursors deviated from the stoichiometry. The SLG substrate was found to be suitable for the cover, and the annealing temperature dependence of cover annealing on the SLG substrate was investigated. When annealing the CTS thin film at 550 °C, only a single-phase monoclinic CTS was found in the XRD and Raman measurements. The bandgap of the CTS thin film was estimated to be approximately 0.91 eV from the \({\left(\alpha h\nu \right)}^{2}\) plots. Thus, the deposition results showed that a Cu-poor CTS thin film suitable for high-efficiency solar cells can be prepared using a non-vacuum process without the sulfurization treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.A. Kuku, O.A. Fakolujo, Sol. Energy Mater. 16, 199–204 (1987). https://doi.org/10.1016/0165-1633(87)90019-0

    Article  CAS  Google Scholar 

  2. M. Bouaziz, M. Amlouk, S. Belgacem, Thin Solid Films. 517, 2527–2530 (2009). https://doi.org/10.1016/j.tsf.2008.11.039

    Article  CAS  Google Scholar 

  3. M. Bouaziz, J. Ouerfelli, S.K. Srivastava, J.C. Bernède, M. Amlouk, Vacuum. 85, 783–786 (2011). https://doi.org/10.1016/j.vacuum.2010.10.001

    Article  CAS  Google Scholar 

  4. K. Chino, J. Koike, S. Eguchi, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Jpn J. Appl. Phys. (2012). https://doi.org/10.1143/JJAP.51.10NC35

    Article  Google Scholar 

  5. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Phys. Status Solidi C 10, 1086–1092 (2013). https://doi.org/10.1002/pssc.201200866

    Article  CAS  Google Scholar 

  6. N.R. Mathews, J. Tamy Benítez, F. Paraguay-Delgado, M. Pal, L. Huerta, J. Mater. Sci. : Mater. Electron. 24, 4060–4067 (2013). https://doi.org/10.1007/s10854-013-1361-5

    Article  CAS  Google Scholar 

  7. N. Aihara, Y. Matsumoto, K. Tanaka, Appl. Phys. Lett. 108, 092107 (2016). https://doi.org/10.1063/1.4943229

    Article  CAS  Google Scholar 

  8. N. Aihara, H. Araki, K. Tanaka, Phys. Stat Solidi B 255, 1700304 (2018). https://doi.org/10.1002/pssb.201700304

    Article  CAS  Google Scholar 

  9. M. Umehara, S. Tajima, Y. Aoki, Y. Takeda, T. Motohiro, Appl. Phys. Exp. 9, 072301 (2016). https://doi.org/10.7567/APEX.9.072301

    Article  CAS  Google Scholar 

  10. H. Araki, M. Yamamoto, G. Nishida, A. Takeuchi, N. Aihara, K. Tanaka, Phys. Stat. Solidi C 14, 1600199 (2017). https://doi.org/10.1002/pssc.201600199

    Article  CAS  Google Scholar 

  11. N. Aihara, K. Tanaka, AIP Adv. 8, 095323 (2018). https://doi.org/10.1063/1.5050033

    Article  CAS  Google Scholar 

  12. K. Toyonaga, H. Araki, Phys. Stat. Solidi C 12, 753–756 (2015). https://doi.org/10.1002/pssc.201400296

    Article  CAS  Google Scholar 

  13. A. Kanai, K. Toyonaga, K. Chino, H. Katagiri, H. Araki, Jpn J. Appl. Phys. (2015). https://doi.org/10.1002/pssc.201400296

    Article  Google Scholar 

  14. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Appl. Phys. Exp. 8, 042303 (2015). https://doi.org/10.7567/APEX.8.042303

    Article  CAS  Google Scholar 

  15. K. Suzuki, J. Chantana, T. Minemoto, Appl. Surf. Sci. 414, 140–146 (2017). https://doi.org/10.1016/j.apsusc.2017.04.099

    Article  CAS  Google Scholar 

  16. J. Chantana, K. Tai, H. Hayashi, T. Nhishimura, Y. Kawano, T. Minemoto, Sol. Energy Mater. Sol. Cells. 206, 11026 (2020). https://doi.org/10.1016/j.solmat.2019.110261

    Article  CAS  Google Scholar 

  17. A. Kanai, M. Sugiyama, Sol. Energy Mater. Sol. Cells. 231, 111315 (2021). https://doi.org/10.1016/j.solmat.2021.111315

    Article  CAS  Google Scholar 

  18. Q. Zhang, H. Deng, J. Yu, B. Xu, J. Tao, P. Yang, L. Sun, J. Chu, Mater. Lett. 228, 447–449 (2018). https://doi.org/10.1016/j.matlet.2018.06.083

    Article  CAS  Google Scholar 

  19. M.H. Sayed, E.V.C. Robert, P.J. Dale, L. Gütay, Thin Solid Films. 669, 436–439 (2019). https://doi.org/10.1016/j.tsf.2018.11.002

    Article  CAS  Google Scholar 

  20. X. Liu, X. Li, X. Li, Q. Li, D. Zhang, N. Yu, S. Wang, Phys. B 627, 413613 (2022). https://doi.org/10.1016/j.physb.2021.413613

    Article  CAS  Google Scholar 

  21. T. Kawaharamura, H. Nishinaka, S. Fujita, Jpn J. Appl. Phys. 47, 4669–4675 (2008). https://iopscience.iop.org/article/https://doi.org/10.1143/JJAP.47.4669

    Article  CAS  Google Scholar 

  22. T. Kawaharamura, S. Fujita, Phys. Stat. Solidi C 5, 3138–3140 (2008). https://doi.org/10.1002/pssc.200779305

    Article  CAS  Google Scholar 

  23. K. Tanaka, M. Kowata, F. Yoshihisa, S. Imai, W. Yamazaki, Thin Solid Films. 697, 137820 (2020). https://doi.org/10.1016/j.tsf.2020.137820

    Article  CAS  Google Scholar 

  24. K. Okamura, R. Saito, A. Kanai, K. Tanaka, Appl. Phys. A 128, 980 (2022). https://doi.org/10.1007/s00339-022-06133-4

    Article  CAS  Google Scholar 

  25. Y. Matsumoto, N. Aihara, A. Munemura, K. Tanaka, Mater. Lett. 170, 213–216 (2016). https://doi.org/10.1016/j.matlet.2016.02.039

    Article  CAS  Google Scholar 

  26. D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012). https://doi.org/10.1063/1.4712623

    Article  CAS  Google Scholar 

  27. S. Dias, S.B. Krupanidhi, AIP Adv. 6, 025217 (2016). https://doi.org/10.1063/1.4942775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Nippon Sheet Glass Foundation for Materials Science and Engineering. This research was conducted using equipment shared by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) project for promoting the public utilization of advanced research infrastructure (Program for supporting the construction of core facilities; Grant No. JPMXS0440900022).

Funding

This study was supported in part by the Nippon Sheet Glass Foundation for Materials Science and Engineering. Author Kazuya Okamura, Ren Saito, Hirotaka Maeta, and Ayaka Kanai declare they have no financial interests. Author Kunihiko Tanaka have received grand from Nippon Sheet Glass Foundation for Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KT, KO, RS, HM and AK. The first draft of the manuscript was written by KT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kunihiko Tanaka.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data supporting this study are available from the corresponding author upon reasonable request.

Ethical approval

The authors declare that there are no ethics problems.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Okamura, K., Saito, R. et al. Effect of cover annealing on Cu2SnS3 thin films deposited by dual-source fine-channel mist chemical vapor deposition. J Mater Sci: Mater Electron 34, 1742 (2023). https://doi.org/10.1007/s10854-023-11155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11155-6

Navigation