Skip to main content
Log in

Impact of coexisting ions on the structure and functional properties in LaFeO3 nanoparticle

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Sm and Mn co-doped nanoparticles are synthesized through ethylene glycol assisted sol–gel route to study the impact of both rare earth ions and Mn on the structural, magnetic and low temperature electronic behaviour in LaFeO3. The Rietveld analysis of X-ray diffraction data shows a single phase nature of the nanoparticle with distorted orthorhombic crystal structure. The unit cell volume reduces with increasing Mn, is due to the ionic radii differences between the cations which cause crystal lattice contraction because of the distortion of Fe/MnO6 octahedra. Mostly, particles are agglomerated with an average particle size of 38.5 nm. From the XPS spectra, the existence of multivalence state of both Fe and Mn are obtained. This multiple state of transition metal ions along with Sm are expected to play a major role in the magnetic interactions and other related properties. A drastic magnetic disorder phase is acquired by the modified systems at low temperature as compared to the pure G-Type LaFeO3. Furthermore, the modified nanoparticle shows a colossal dielectric response (> 103 at 100 Hz) and the obtained dielectric relaxation follows mostly non-Debye type which is further confirmed through explicit modulus spectra analysis. From the impedance, modulus and ac-conductivity analysis, the conduction processes in the modified systems reveal a possible N-type and P-type polaronic conduction for both the grain and grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Some of the data generated during this study are included in this article. The rest datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, J. Appl. Phys. 85, 5828 (1999)

    Article  CAS  Google Scholar 

  2. E. Li, Z. Feng, B. Kang, J. Zhang, W. Ren, S. Cao, J. Alloys Compd. 811, 152043 (2019)

    Article  CAS  Google Scholar 

  3. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Phys. Lett. A 382, 3018 (2018)

    Article  CAS  Google Scholar 

  4. G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35, 915 (1964)

    Article  CAS  Google Scholar 

  5. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, J. Alloys Compd. 583, 21 (2014)

    Article  CAS  Google Scholar 

  6. K.K. Bhagav, S. Ram, S.B. Majumdar, J. Appl. Phys. 115, 204109 (2014)

    Article  Google Scholar 

  7. V.M. Gaikwad, S.A. Acharya, RSC Adv. 5, 14366 (2015)

    Article  CAS  Google Scholar 

  8. T. Lakshmana Rao, M.K. Pradhan, U.K. Goutam, V. Siruguri, V.R. Reddy, S. Dash, J. Appl. Phys. 126, 064104 (2019)

    Article  Google Scholar 

  9. W. Koebler, E. Wallan, M. Wilkinson, Phys. Rev. 118, 58 (1960)

    Article  Google Scholar 

  10. J.N. Kuhn, P.H. Matter, J.M. Millet, R.B. Watson, U.S. Ozkan, J. Phys. Chem. C 112, 12468 (2008)

    Article  CAS  Google Scholar 

  11. S. Komine, E. Iguchi, J. Phys. Chem. Solids. 68, 1504 (2007)

    Article  CAS  Google Scholar 

  12. A. Benali, S. Aziz, M. Bejar, E. Dhahri, M.F.P. Graca, Ceram. Int. 40, 14367 (2014)

    Article  CAS  Google Scholar 

  13. K. R.Andoulsi, M.F. H-Naifer, Powder Technol. 230, 183 (2012)

    Article  Google Scholar 

  14. I. Natali Sora, J. Solid State Chem. 191, 33 (2012)

    Article  CAS  Google Scholar 

  15. L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Mater. Chem. Phys. 125, 305 (2011)

    Article  CAS  Google Scholar 

  16. M.B. Bellakki, B.J. Kelly, V. Manivannan, J. Alloys Compd. 489, 64 (2010)

    Article  CAS  Google Scholar 

  17. P.B. Selvadurai, A. Pazhanivelu, V. Jagadeeshwaran, C. Murugaraj, R. PanneerMuthuselvam, I.F.C. Chou, J. Alloys Compd. 646, 924 (2015)

    Article  Google Scholar 

  18. X. Wei, Y. Wang, J.-P. Liu, C.-M. Xiao, W.-W. Zeng, S.-B. Ye, J. Mater. Sci. 48, 1117 (2013)

    Article  CAS  Google Scholar 

  19. M. Dhiman, S. Singhal, J. Rare Earths. 37, 1279 (2019)

    Article  CAS  Google Scholar 

  20. J. Rumble (ed.), CRC handbook of chemistry and physics (CRC Press, 2022)

  21. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  22. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  23. V. Uvarov, I. Popov, Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  24. V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, Euro. Phys. Lett. 101, 17008 (2013)

    Article  Google Scholar 

  25. J. Andreasson, J. Holmlund, R. Rauer, M. Kall, L. Borjesson, C.S. Knee, A.K. Eriksson, M. ErikssonSten-G, M. Rubhausen, R.P. Chaudhury, Phys. Rev. B 78, 235103 (2008)

    Article  Google Scholar 

  26. M. Scepanovic, M. Grujic-Brojcin, Z. Dohcevic-Mitrovic, V. Popovic Zoran, J. Phys.: Conf. Ser. 253, 012015 (2010)

    Google Scholar 

  27. M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998)

    Article  CAS  Google Scholar 

  28. M.A.F.H. Zhang, X. Lin, A. Yang, S. Yang, G. Li, F. Liao, J. Lin, J. RSC Adv. 5, 12866 (2015)

    Article  Google Scholar 

  29. P.A. Joy, P.S. Anil Kumar, S.K. Date, J. Phys. Condens. Matter. 10, 11049 (1998)

    Article  CAS  Google Scholar 

  30. Y. Tokura, Colossal magnetoresistive oxides (CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  31. S. Dash, A. Banerjee, P. Chaddah, J. Appl. Phys. 113, 17D912 (2013)

    Article  Google Scholar 

  32. M.M. Costa Jr., G.F.M. Pires, J. Terezo, M.P.F. Grac, A.S.B. Sombra, J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  33. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  34. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B 77, 014111 (2008)

    Article  Google Scholar 

  35. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy, theory and applications (John Wiley and Sons Inc., New York, 2005)

    Book  Google Scholar 

  36. N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221 (2002)

    CAS  Google Scholar 

  37. M. Idrees, M. Nadeem, M.M. Hassan, J. Phys. D: Appl. Phys. 43, 155401 (2010)

    Article  Google Scholar 

  38. S. Dey, R. Mondal, S.K. Dey, S. Majumder, P. Dasgupta, A. Poddar, V.R. Reddy, S. Kumar, J. Appl. Phys. 118, 103905 (2015)

    Article  Google Scholar 

  39. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author is thankful to the Prof. Tsunehiro Takeuchi from Toyota Technological Institute Nagoya Japan, for providing the magnetic measurements using QD PPMS with VSM option.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TL: Performed the samples preparation, measurements and paper redaction. AS: Performed the dielectric measurements and contributed to the discussion of the dielectric properties. SS: Performed the magnetic measurements.SD: Writing original draft, Investigations and Supervision.

Corresponding author

Correspondence to S. Dash.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We declare that the manuscript is new and not submitted anywhere for the publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4946.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmana Rao, T., Sahoo, A.K., Singh, S. et al. Impact of coexisting ions on the structure and functional properties in LaFeO3 nanoparticle. J Mater Sci: Mater Electron 34, 1758 (2023). https://doi.org/10.1007/s10854-023-11151-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11151-w

Navigation