Skip to main content
Log in

Thermal diffusivity and conductivity measurement of undoped La2O3 powder by homemade photoacoustic spectrometer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photoacoustic spectroscopy is a unique experimental technique for material characterization in any phase such as solid, liquid, gas, or condensed medium. The thermal properties like thermal diffusivity or thermal conductivity have been measured by recorded photoacoustic signals varying chopping frequency under 980 nm diode laser sources. In this work, the authors have fabricated homemade photoacoustic cell and a pre-amplifier device and optimized both for maximum sensitivity. The cavity volume is measured 4.80 × 10−6 m3 at optimum condition. Finally, the thermal diffusivity and thermal conductivity of undoped La2O3 oxide are measured. Thermal diffusivity has been found from 2.481 × 10‒6 to 2.530 × 10‒6 m2/s for the excitation power density range (63.69–87.57)×108 mW/m2. Conversely, the thermal conductivity has been measured from 5.067 to 5.168 Wm‒1k‒1 for the same excitation condition. Finally, the absorption spectrum of the sample is recorded by excited the sample with 500 Watt Xenon source varying wavelength. The absorption peaks are found near 967, 1310, and 1420 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original data that support the findings of the present study are available from the corresponding author upon reasonable request.

References

  1. A.G. Bell, On the production and reproduction of sound by light. Am. J. Sci. 20, 305 (1880)

    Article  Google Scholar 

  2. A.G. Bell, Upon the production of sound by radiant energy. Philos. Mag J. Sci. 11, 510–528 (1881). https://doi.org/10.1080/14786448108627053

    Article  Google Scholar 

  3. A. Rosencwaig, A. Gersho, Theory of the photoacoustic effect with solids. J. Appl. Phys. 47, 64 (1976). https://doi.org/10.1063/1.322296

    Article  Google Scholar 

  4. N.A. George, C.P.G. Vallabhan, V.P.N. Nampoori, A.K. George, P. Radhakrishnan, Use of photoacoustic effect for the detection of phase transitions in liquid crystal mixtures. Appl. Phys. 33, 3228–3232 (2000). https://doi.org/10.1088/0022-3727/33/24/316

    Article  CAS  Google Scholar 

  5. A. Rosencwaig, J.B. Willis, Photoacoustic absorption measurements of optical materials and thin films. J. Appl. Phys. 51(8), 4361–4364 (1980). https://doi.org/10.1063/1.328297

    Article  CAS  Google Scholar 

  6. O. Pessoa, C.L. Cesar, N.A. Patel, H. Vargas, Two-beam photoacoustic phase measurement of the thermal diffusivity of solids. J. Appl. Phys. 59, 1316 (1986). https://doi.org/10.1063/1.336524

    Article  CAS  Google Scholar 

  7. H. Vargas, L.C.M. Miranda, Photoacoustic and related photothermal techniques. Phys. Rep. 161, 43–101 (1988). https://doi.org/10.1016/0370-1573(88)90100-7

    Article  CAS  Google Scholar 

  8. T. Schmid, Photoacoustic spectroscopy for process analysis. Anal. Bioanal. Chem. 384, 1071–1086 (2006). https://doi.org/10.1007/s00216-005-3281-6

    Article  CAS  Google Scholar 

  9. C.R. Philbrick, D.M. Brown, A.H. Willitsford, P.S. Edwards, A.M. Wyant, Z.Z. Liu, C.T. Chadwick, H. Hallen, Remote sensing of chemical species in the atmosphere. In Proc. Fourth Symp. Lidar Atmospheric Application (2009). http://ams.confex.com/ams/pdfpapers/150051.pdf

  10. T. Kobayashi, Techniques for laser remote sensing of the environment. Remote Sens. Rev. 3(1), 1–56 (1987). https://doi.org/10.1080/02757258709532087

    Article  Google Scholar 

  11. A. Elia, P.M. Lugara, C. Di Franco, V. Spagnolo, Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 9(12), 9616–9628 (2009). https://doi.org/10.3390/s91209616

    Article  CAS  Google Scholar 

  12. C.M. Wynn, S. Palmacci, M.L. Clark, R.R. Kunz, High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy. Opt. Eng. 53(2), 021103 (2013). https://doi.org/10.1117/1.OE.53.2.021103

    Article  CAS  Google Scholar 

  13. E. Marin, Thermal physics concepts: the role of the thermal effusivity. Phys. Teach. 44, 432–434 (2006). https://doi.org/10.1119/1.2353583

    Article  Google Scholar 

  14. A. Bedoya, F.G. -Delgado, Y.E. Cruz-Santillana, J. Plazas, E. Marin, Thermal effusivity measurement of conventional and organic coffee oils via photopyroelectric technique. Food Res. Int. 102, 419–424 (2017). https://doi.org/10.1016/j.foodres.2017.09.013

    Article  CAS  Google Scholar 

  15. A.R. Sadrolhosseini, A.S.M. Noor, K. Shameli, A. Kharazmi, N.M. Huang, M.A. Mahdi, Preparation of graphene oxide stabilized nickel nanoparticles with thermal effusivity properties by laser ablation method. J. Nanomater. (2013). https://doi.org/10.1155/2013/986764

    Article  Google Scholar 

  16. M.I. Sarkar, K. Kumar,  Fabrication of photoacoustic cell and thermal diffusivity measurement of coal carbon black using it. Mater. Today: Proc. 52, 1812–1816 (2022)

    Article  CAS  Google Scholar 

  17. M. Schmitt, C.M. Poffo, J.C. de Lima, C.P. Fernandes, S. dos Santos, Application of photoacoustic spectroscopy to characterize thermal diffusivity and porosity of caprocks. Eng. Geol. 220, 183–195 (2017). https://doi.org/10.1016/j.enggeo.2017.02.003

    Article  Google Scholar 

  18. M.I. Sarkar, K. Kumar, Thermal diffusivity measurement of MoS2 & MoS2-GO Nano-Composite by Photoacoustic Spectroscopy. ECS Trans. 107, 11643 (2022). https://doi.org/10.1149/10701.11643ecst

    Article  Google Scholar 

  19. G.S. Mhlongo, O.M. Ntwaeaborwa, H.C. Swart, R.E. Kroon, P. Solarz, W. Ryba-Romanowski, K.T. Hillie, Luminescence dependence of Pr3+ activated SiO2 Nanophosphor on Pr3+ concentration, temperature, and ZnO incorporation. J. Phys. Chem. C 115, 17625–17632 (2011). https://doi.org/10.1021/jp201142d

    Article  CAS  Google Scholar 

  20. B. Yan, X.-Q. Su, In situ co-precipitation synthesis and photoluminescence of YxGd1–xVO4:Tm3+ microcrystalline phosphors by hybrid precursors. Opt. Mater. 29, 1866–1870 (2007). https://doi.org/10.1016/j.optmat.2006.10.024

    Article  CAS  Google Scholar 

  21. D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors. Displays. 19, 197–203 (1999). https://doi.org/10.1016/S0141-9382(98)00050-X

    Article  CAS  Google Scholar 

  22. R. Dey, V.K. Rai, A. Pandey, Green upconversion emission in Nd3+–Yb3+–Zn2+: Y2O3 phosphor. Spectrochim. Acta Part A 99, 288–291 (2012). https://doi.org/10.1016/j.saa.2012.09.001

    Article  CAS  Google Scholar 

  23. I. Djerdj, G. Garnweitner, D.S. Su, M. Niederberger, Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles. J. Solid State Chem. 180, 2154–2165 (2007). https://doi.org/10.1016/j.jssc.2007.05.019

    Article  CAS  Google Scholar 

  24. X. Wang, Y. Li, Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties. Chem. Eur. J. 9, 5627–5635 (2003). https://doi.org/10.1002/chem.200304785

    Article  CAS  Google Scholar 

  25. M.I. Sarkar, N.K. Mishra, K. Kumar, Comparative study of upconversion and photoacoustic measurements of Er3+/Yb3+ doped La2O3 phosphor under 980 nm. Method Appl. Fluoresc. 11(1), 014002 (2022). https://doi.org/10.1088/2050-6120/ac9fa7

    Article  Google Scholar 

  26. B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen, Z. Shi, Y. Dong, Sol–solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods. Nanotechnology. 15, 1273 (2004). https://doi.org/10.1088/0957-4484/15/9/027

    Article  CAS  Google Scholar 

  27. J. Cao, H. Ji, J. Liu, M. Zheng, X. Chang, X. Ma, A. Zhang, Q. Xu, Controllable syntheses of hexagonal and lamellar mesostructured lanthanum oxide. Mater. Lett. 59(4), 408–411 (2005). https://doi.org/10.1016/j.matlet.2004.09.034

    Article  CAS  Google Scholar 

  28. K. Sathiyamoorthy, E.M. Strohm, M.C. Kolios, Low-power noncontact photoacoustic microscope for bioimaging applications. J. Biomed. Opt. 22(4), 046001 (2017). https://doi.org/10.1117/1.JBO.22.4.046001

    Article  Google Scholar 

  29. S. Pandhija, N.K. Rai, A.K. Singh, A.K. Rai, R. Gopal, Development of photoacoustic spectroscopic technique for the study of materials. Prog. Cryst. Growth Charact. Mater. 52, 53–60 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.03.022

    Article  CAS  Google Scholar 

  30. L. Fornarini, J.C. Conde, C. Alvani, D. Olevano, S. Chiussi, Experimental determination of La2O3 thermal conductivity and its application to the thermal analysis of a-Ge/La2O3 /c-Si laser annealing. Thin Solid Films 516, 7400–7405 (2008). https://doi.org/10.1016/j.tsf.2008.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are appreciatively acknowledged to Department of Science and Technology (DST), New Delhi for financial support. Minarul (17DR000415) is also thankful to IIT(ISM) Dhanbad for providing research fellowship in terms of senior research fellow (SRF).

Funding

This work was supported by  DST-SERB, NEW DELHI (Grant no.: DST(SERB)/EMR/2017/000228).

Author information

Authors and Affiliations

Authors

Contributions

MIS Conceptualization, Methodology, Writing—Original draft preparation, Data curation, Investigation, Reviewing, and Editing. KK Supervision, Validation, Resources, Writing—Reviewing and Editing.

Corresponding author

Correspondence to Minarul I. Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, M.I., Kumar, K. Thermal diffusivity and conductivity measurement of undoped La2O3 powder by homemade photoacoustic spectrometer. J Mater Sci: Mater Electron 34, 1762 (2023). https://doi.org/10.1007/s10854-023-11146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11146-7

Navigation