Skip to main content
Log in

Flexible piezoresistive sensors and triboelectric nanogenerators based on 3D porous structure PDMS/PPy composites materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Both flexible piezoresistive sensors (FPS) and triboelectric nanogenerators (TENG) have the huge demand for the application in human physiological signals monitoring and human activity monitoring. In this work, the flexible three-dimensional (3D) porous structure polydimethylsiloxane/polypyrrole (PDMS/PPy) composite materials were designed and prepared. The 3D porous structure PDMS/PPy has large surface roughness and sufficient free volume for bulk deformation under pressure loading and unloading. The PDMS/PPy composite materials were used as sensitive materials of FPS and friction layer materials of TENG. The champion FPS based on PDMS/PPy composite materials has a sensitivity of 165.26 kPa−1 in the linear region of 200 kPa and long-term stability up to 5500 cycles. The two-electrode contact-separation mode TENG was assembled using Al-PI and PDMS/PPy-ITO. TENG exhibits an output voltage of 6 V, power density of 39.38 μW/cm2 and dynamic stability up to 10,000 cycles. This FPS and TENG can be integrated into flexible wearable platforms for self-powered real-time monitoring of physiological signals and human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. C. Hou, Y. Liu, R.S. Liu, X.C. Liang, Z.T. Wu, Z.H. Wu, Nano Energy 97, 107189 (2022)

    Article  CAS  Google Scholar 

  2. Q. Shu, S. Liu, J.P. Wu, H.X. Deng, X.L. Gong, S.H. Xuan, Chem. Eng. J. 433, 134424 (2022)

    Article  CAS  Google Scholar 

  3. Y.F. Meng, Y.J. Ma, X. Feng, A.C.S. Appl, Electron. Mater. 2, 3577 (2020)

    CAS  Google Scholar 

  4. Y. Chen, G. Gao, J. Zhao, H. Zhang, J. Yu, X. Yang, Q. Zhang, W. Zhang, S. Xu, J. Sun, Y. Meng, Q. Sun, Adv. Funct. Mater. 29, 1 (2019)

    Google Scholar 

  5. Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Adv. Mater. 28(22), 4373 (2016)

    Article  CAS  Google Scholar 

  6. Z. Qiao, A.X. Wei, K.D. Wang, N.Q. Luo, Z. Liu, J. Alloys Compd. 917, 165503 (2022)

    Article  CAS  Google Scholar 

  7. Q.B. Zheng, J.H. Lee, X. Shen, X.D. Chen, J.K. Kim, Mater. Today 36, 158 (2020)

    Article  Google Scholar 

  8. T.Q. Trung, N.E. Lee, Adv. Mater. 28, 4338 (2016)

    Article  CAS  Google Scholar 

  9. T. Dinh, T. Nguyen, H.P. Phan, N.T. Nguyen, D. Viet Dao, J. Bell, Biosens. Bioelectron. 166, 112460 (2020)

    Article  CAS  Google Scholar 

  10. M.M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu, Z.L. Wang, Adv. Mater. 29, 17037009 (2017)

    Google Scholar 

  11. J.F. Shu, R.R. Yang, Y.Q. Chang, X.Q. Guo, X. Yang, J. Alloys Compd. 879, 160466 (2021)

    Article  CAS  Google Scholar 

  12. X.P. Li, Y. Li, X. Li, D. Song, P. Min, C. Hu, H.-B. Zhang, N. Koratkar, Z.-Z. Yu, J. Colloid Interface Sci. 542, 54 (2019)

    Article  CAS  Google Scholar 

  13. J. Li, S. Orrego, J. Pan, P. He, S.H. Kang, Nanoscale 11, 2779 (2019)

    Article  CAS  Google Scholar 

  14. A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, ACS Appl. Mater. Interfaces 10, 51859 (2018)

    Article  Google Scholar 

  15. B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Nat. Commun. 9, 5161 (2018)

    Article  Google Scholar 

  16. L.S. Yan Ma, M. Chen, Z. Li, L.M. Wu, Chem. Eng. J. 441, 136028 (2022)

    Article  Google Scholar 

  17. S.Q. Peng, Q.Q. Guo, N. Thirunavukkarasu, Y.L. Zheng, Z. Wang, L.H. Zheng, L.X. Wu, Z.X. Weng, Chem. Eng. J. 439, 135593 (2022)

    Article  CAS  Google Scholar 

  18. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. Cheng, Nat. Commun. 5, 3132 (2014)

    Article  Google Scholar 

  19. X. Chen, L. Luo, Z. Zeng, J. Jiao, M. Shehzad, G. Yuan, H. Luo, Y.J. Wang, Materiomics 6, 643 (2020)

    Article  Google Scholar 

  20. J.B. Yu, L. Chen, X.J. Hou, J.L. Mu, J. He, W.P. Geng, X.J. Qiao, X.J. Chou, J. Materiomics 8, 247 (2022)

    Article  Google Scholar 

  21. Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Adv. Mater. 26, 4690 (2014)

    Article  CAS  Google Scholar 

  22. X. Zhang, Y. Zheng, D. Wang, Z.U. Rahman, F. Zhou, Nano Energy 30, 321 (2016)

    Article  CAS  Google Scholar 

  23. L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang, Z.L. Wang, Adv. Mater. 28, 1650 (2016)

    Article  CAS  Google Scholar 

  24. M. Zhang, T. Gao, J.S. Wang, J.J. Liao, Y.Q. Qiu, Q. Yang, H. Xue, Z. Shi, Y. Zhao, Z.X. Xiong, L.F. Chen, Nano Energy 13, 298 (2015)

    Article  CAS  Google Scholar 

  25. M. Kim, C.J. Lee, S.H. Kim, M.U. Park, J. Yang, Y. Yi, K.H. Yoo, J. Mater. Chem. A 9, 10316 (2021)

    Article  CAS  Google Scholar 

  26. Y.J. Kim, X.W. Wu, J.H. Oh, Sci. Rep. 10, 2742 (2020)

    Article  CAS  Google Scholar 

  27. Y.G. Feng, Y.B. Zheng, G. Zhang, D.A. Wang, F. Zhou, W.M. Liu, Nano Energy 38, 467 (2017)

    Article  CAS  Google Scholar 

  28. S. Jang, H. Kim, J.H. Oh, Nanoscale 9, 13034 (2017)

    Article  CAS  Google Scholar 

  29. G. Zhu, Z.H. Lin, Q.S. Jing, P. Bai, C.F. Pan, Y. Yang, Y.S. Zhou, Z.L. Wang, Nano Letter 13, 847 (2013)

    Article  CAS  Google Scholar 

  30. K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang, J.Y. Kim, M.H. Kim, K.S. Shin, M.K. Gupta, J.M. Baik, S.W. Kim, Adv. Mater. 26, 5037 (2014)

    Article  CAS  Google Scholar 

  31. H.Y. Mi, X. Jing, Q.F. Zheng, L.M. Fang, H.X. Huang, L.S. Turng, S.Q. Gong, Nano Energy 48, 327–336 (2018)

    Article  CAS  Google Scholar 

  32. Y. Feng, Y. Zheng, S. Ma, D. Wang, F. Zhou, W. Liu, Nano Energy 19, 48 (2016)

    Article  CAS  Google Scholar 

  33. H.Y. Li, L. Su, S.Y. Kuang, C.F. Pan, G. Zhu, Z.L. Wang, Adv. Funct. Mater. 25, 5691 (2015)

    Article  CAS  Google Scholar 

  34. S. Wang, Y. Zi, Y.S. Zhou, S. Li, F. Fan, L. Lin, Z.L. Wang, J. Mater. Chem. A 4, 3728 (2016)

    Article  CAS  Google Scholar 

  35. J. Luo, S. Gao, H. Luo, L. Wang, X. Huang, Z. Guo, X. Lai, L. Lin, R.K.Y. Li, J. Gao, Chem. Eng. J. 406, 126898 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work has been financially supported by the National Science Foundation of China (No. 61904040).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by Zhou Qiao, Zhiwen Chen, Ningqi Luo and Aixiang Wei. The first draft of the manuscript was written by Zhou Qiao, Zhiwen Chen. All authors contributed to the study conception and design. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aixiang Wei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Financial interests

All authors have no relevant financial or non-financial interests to disclose.

Compliance with ethical standard

The paper reflects the authors’ research and analysis in a truthful and complete manner.

Informed consent

Not applicable in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Chen, Z., Luo, N. et al. Flexible piezoresistive sensors and triboelectric nanogenerators based on 3D porous structure PDMS/PPy composites materials. J Mater Sci: Mater Electron 34, 1730 (2023). https://doi.org/10.1007/s10854-023-11131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11131-0

Navigation