Skip to main content

Advertisement

Log in

Electrochemical performance evaluation of a newly developed ZnS–SnO2 composite in an aqueous electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We reported the sol–gel synthesis for preparing ZnS and SnO2 products and their composite material, for the first time for application as an electrode for a hybrid supercapacitor to attain an optimized energy storage performance. The structural feature reveals that the high phase purity and crystallinity with tetragonal SnO2, and in the cubic crystal structure of ZnS has been successfully verified from XRD analysis. A snow-like morphology of SnO2 and irregular nanoparticles in shape with a honeycomb-like appearance of ZnS and their combination that is detected in the ZnS–SnO2 composite without any residues was noticed on the surface of the samples, which was confirmed from the FESEM study. The electrochemical properties demonstrated that the ZnS–SnO2 composite manifests more awesome performance than its bulk materials, e.g., 466 F/g of capacitance, good rate performance, and reversibility with good charge transport properties. These striking results motivated us to fabricate a hybrid supercapacitor for practical aspects of the as-prepared electrode material. To do so, a ZnS–SnO2||AC/KOH hybrid supercapacitor was fabricated, which delivers a good stability of 85.7% (7000 cycles) and supreme power delivery of 4238.4 W/kg. A great specific energy of 36.12 Wh/kg after adding an optimum voltage of 1.7 V. These outstanding outcomes manifest the promising route to prepare another metal oxide/hydroxide for electrochemical energy conversion and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data related to this study can be available at a reasonable request from the corresponding author.

References

  1. S.A. Ahmad et al., High power aqueous hybrid asymmetric supercapacitor based on zero-dimensional ZnS nanoparticles with two-dimensional nanoflakes CuSe2 nanostructures. Ceram. Int. 49(12), 20007–20016 (2023)

    Article  CAS  Google Scholar 

  2. M. Arif et al., CdS nanoparticles decorated on carbon nanofibers as the first ever utilized as an electrode for advanced energy storage applications. J. Inorg. Organomet. Polym Mater. 33(4), 969–980 (2023)

    Article  CAS  Google Scholar 

  3. M.S.U. Shah et al., Nickel selenide nano-cubes anchored on cadmium selenide nanoparticles: first-ever designed as electrode material for advanced hybrid energy storage applications. J. Energy Storage. 63, 107065 (2023)

    Article  Google Scholar 

  4. E. Ullah et al., Hydrothermal assisted synthesis of hierarchical SnO2 micro flowers with CdO nanoparticles based membrane for energy storage applications. Chemosphere 321, 138004 (2023)

    Article  CAS  Google Scholar 

  5. M. Sajjad et al., Recent trends in transition metal diselenides (XSe2: X = ni, Mn, Co) and their composites for high energy faradic supercapacitors. J. Energy Storage 43, 103176 (2021)

    Article  Google Scholar 

  6. M. Sajjad et al., A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. J. Energy Storage. 40, 102729 (2021)

    Article  Google Scholar 

  7. Ã. Sánchez-Sánchez et al., The importance of electrode characterization to assess the supercapacitor performance of ordered mesoporous carbons. Microporous Mesoporous Mater. 235, 1–8 (2016)

    Article  Google Scholar 

  8. V. Velmurugan et al., Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 84, 145–151 (2016)

    Article  CAS  Google Scholar 

  9. M.Z.U. Shah et al., A new CuO/TiO2 nanocomposite: an emerging and high energy efficient electrode material for aqueous asymmetric supercapacitors. J. Energy Storage 55, 105492 (2022)

    Article  Google Scholar 

  10. M.Z.U. Shah et al., Copper sulfide nanoparticles on titanium dioxide (TiO2) nanoflakes: a new hybrid asymmetrical faradaic supercapacitors with high energy density and superior lifespan. J. Energy Storage 55, 105651 (2022)

    Article  Google Scholar 

  11. M. Sajjad et al., A novel high-performance all-solid-state asymmetric supercapacitor based on CuSe nanoflakes wrapped on vertically aligned TiO2 nanoplates nanocomposite synthesized via a wet-chemical method. J. Energy Storage 55, 105304 (2022)

    Article  Google Scholar 

  12. B.A. Khan et al., NiSe2 nanocrystals intercalated rGO sheets as a high-performance asymmetric supercapacitor electrode. Ceram. Int. 48(4), 5509–5517 (2022)

    Article  CAS  Google Scholar 

  13. J.A. Syed et al., Hierarchical multicomponent electrode with interlaced Ni(OH)2 nanoflakes wrapped zinc cobalt sulfide nanotube arrays for sustainable high-performance supercapacitors. Adv. Energy Mater. 7(22), 1701228 (2017)

    Article  Google Scholar 

  14. C. Zhang et al., All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities. Nanoscale 9(40), 15423–15433 (2017)

    Article  CAS  Google Scholar 

  15. K. Khan et al., Development of 1.6 V hybrid supercapacitor based on ZnO nanorods/MnO2 nanowires for next-generation electrochemical energy storage. J. Electroanal. Chem. 922, 116753 (2022)

    Article  CAS  Google Scholar 

  16. M.Z.U. Shah et al., A novel TiO2/CuSe based nanocomposite for high-voltage asymmetric supercapacitors. J. Science: Adv. Mater. Devices 7(2), 100418 (2022)

    Google Scholar 

  17. M.Z.U. Shah et al., Hydrothermal synthesis of ZnO@ ZnS heterostructure on ni foam: a binder free electrode for high power and stable hybrid supercapacitors. Mater. Lett. 326, 132910 (2022)

    Article  CAS  Google Scholar 

  18. M. Sajjad, W. Lu, Covalent organic frameworks based nanomaterials: design, synthesis, and current status for supercapacitor applications: a review. J. Energy Storage. 39, 102618 (2021)

    Article  Google Scholar 

  19. M. Sajjad, W. Lu, Honeycomb-based heterostructures: an emerging platform for advanced energy applications: a review on energy systems. Electrochem. Sci. Adv. 2(5), e202100075 (2022)

    Article  CAS  Google Scholar 

  20. J. Li et al., Three-dimensional nitrogen and phosphorus co-doped carbon quantum dots/reduced graphene oxide composite aerogels with a hierarchical porous structure as superior electrode materials for supercapacitors. J. Mater. Chem. A 7(46), 26311–26325 (2019)

    Article  CAS  Google Scholar 

  21. K. Chen et al., Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44(17), 6230–6257 (2015)

    Article  CAS  Google Scholar 

  22. J. Ismail et al., Comparative capacitive performance of MnSe encapsulated GO based nanocomposites for advanced electrochemical capacitor with rapid charge transport channels. Mater. Chem. Phys. 284, 126059 (2022)

    Article  CAS  Google Scholar 

  23. M. Sajjad et al., A new CuSe–TiO2–GO ternary nanocomposite: realizing a high capacitance and voltage for an advanced hybrid supercapacitor. Nanomaterials 13(1), 123 (2022)

    Article  Google Scholar 

  24. Z. Yang et al., Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. 28(23), 17533–17540 (2017)

    Article  CAS  Google Scholar 

  25. X. Jia, X. Wu, B.J.D.T. Liu, Formation of ZnCo2O4@ MnO2 core–shell electrode materials for hybrid supercapacitor. Dalton Trans. 47(43), 15506–15511 (2018)

    Article  CAS  Google Scholar 

  26. H. Liu et al., Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@ MoZn22 core-shell structures. Chem. Eng. J. 373, 485–492 (2019)

    Article  CAS  Google Scholar 

  27. K. Tao et al., A metal–organic framework derived hierarchical nickel–cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors. Dalton Trans. 47(10), 3496–3502 (2018)

    Article  CAS  Google Scholar 

  28. X. Han et al., Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 10(6), 2735–2741 (2018)

    Article  CAS  Google Scholar 

  29. G. Yuan et al., Cu/Cu2O nanostructures derived from copper oxalate as high performance electrocatalyst for glucose oxidation. Chin. Chem. Lett. 31(7), 1941–1945 (2020)

    Article  CAS  Google Scholar 

  30. T.N. Trindade, L.A.J.J.o.A., Silva, Compounds, Cd-doped SnO2/CdS heterostructures for efficient application in photocatalytic reforming of glycerol to produce hydrogen under visible light irradiation. J. Alloys Compd. 735, 400–408 (2018)

    Article  CAS  Google Scholar 

  31. N. Bhardwaj, S.J.C.I. Mohapatra, Structural, optical and gas sensing properties of Ag–SnO2 plasmonic nanocomposite thin films. Ceram. Int. 42(15), 17237–17242 (2016)

    Article  CAS  Google Scholar 

  32. S. Ren et al., Hollow SnO2 microspheres and their carbon-coated composites for supercapacitors. Colloids Surf. A: Physicochem. Eng. Asp. 444, 26–32 (2014)

    Article  CAS  Google Scholar 

  33. L. Yu et al., Hydrothermal synthesis of SnO2 and SnO2@ C nanorods and their application as anode materials in lithium-ion batteries. RSC Adv. 3(38), 17281–17286 (2013)

    Article  CAS  Google Scholar 

  34. B. Saravanakumar et al., Enhanced pseudocapacitive performance of SnO2, ZnS–nO2, and Ag–SnO2 nanoparticles. Ionics 24(12), 4081–4092 (2018)

    Article  CAS  Google Scholar 

  35. H. Chen et al., Highly conductive NiCo2 S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5(19), 8879–8883 (2013)

    Article  CAS  Google Scholar 

  36. Y. Gao et al., Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 7(7), 4311–4319 (2015)

    Article  CAS  Google Scholar 

  37. S.A. Ahmad et al., Facile synthesis of hierarchical ZnS@ FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors. J. Science: Adv. Mater. Devices 7(4), 100489 (2022)

    CAS  Google Scholar 

  38. K. Krishnamoorthy et al., One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116–122 (2014)

    Article  CAS  Google Scholar 

  39. S. BiBi et al., A new ZnO–ZnS–CdS heterostructure on Ni substrate: a binder-free electrode for advanced asymmetric supercapacitors with improved performance. Electrochim. Acta 430, 141031 (2022)

    Article  CAS  Google Scholar 

  40. N.S. Arul, L. Cavalcante, J. In Han, Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J. Solid State Electrochem. 22(1), 303–313 (2018)

    Article  CAS  Google Scholar 

  41. R. Ramachandran et al., Solvothermal synthesis of zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes. Electrochim. Acta 178, 647–657 (2015)

    Article  CAS  Google Scholar 

  42. X. Hou et al., Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10(8), 2570–2583 (2017)

    Article  CAS  Google Scholar 

  43. K. Patel, M. Deshpande, S. Chaki, Doping-induced changes in the structural, optical, magnetic and thermal properties of Ni: ZnS nanoparticles prepared by microwave-assisted chemical method. Appl. Phys. A 127(10), 1–8 (2021)

    Article  Google Scholar 

  44. U. Gawai, B. Dole, Local structural studies on Co doped ZnS nanowires by synchrotron X-ray atomic pair distribution function and micro-raman shift. RSC Adv. 7(59), 37402–37411 (2017)

    Article  CAS  Google Scholar 

  45. R. Katiyar et al., Dynamics of the rutile structure. III. Lattice dynamics, infrared and Raman spectra of SnO2. J. Phys. C: Solid State Phys. 4(15), 2421 (1971)

    Article  CAS  Google Scholar 

  46. K. Yu et al., Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys. Rev. B 55(4), 2666 (1997)

    Article  CAS  Google Scholar 

  47. M. Sajjad et al., Low-temperature synthesis of 3D copper selenide micro-flowers for high-performance supercapacitors. Mater. Lett. 314, 131857 (2022)

    Article  CAS  Google Scholar 

  48. M. Sajjad et al., CuCo2O4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy. New J. Chem. 45(44), 20751–20764 (2021)

    Article  CAS  Google Scholar 

  49. M. Sajjad, Y. Khan, Rational design of self-supported Ni3S2 nanoparticles as a battery type electrode material for high-voltage (1.8 V) symmetric supercapacitor applications. CrystEngComm 23(15), 2869–2879 (2021)

    Article  CAS  Google Scholar 

  50. M. Sajjad, R. Tao, L. Qiu, Phosphine based covalent organic framework as an advanced electrode material for electrochemical energy storage. J. Mater. Sci.: Mater. Electron. 32(2), 1602–1615 (2021)

    CAS  Google Scholar 

  51. M. Sajjad et al., Phosphine-based porous organic polymer/rGO aerogel composites for high-performance asymmetric supercapacitor. ACS Appl. Energy Mater. 4(1), 828–838 (2021)

    Article  CAS  Google Scholar 

  52. M. Sajjad et al., Bismuth Yttrium Oxide (Bi3YO6), a new electrode material for asymmetric aqueous supercapacitors. J. Inorg. Organomet. Polym Mater. 31(3), 1260–1270 (2021)

    Article  CAS  Google Scholar 

  53. A. Ali et al., Honeycomb like architectures of the Mo doped ZnS@ Ni for high-performance asymmetric supercapacitors applications. Synth. Met. 265, 116408 (2020)

    Article  CAS  Google Scholar 

  54. M. Sajjad, Y. Khan, W. Lu, One-pot synthesis of 2D SnS2 nanorods with high energy density and long term stability for high-performance hybrid supercapacitor. J. Energy Storage 35, 102336 (2021)

    Article  Google Scholar 

  55. X. Zhao et al., Covalent organic framework templated ordered nanoporous C60 as stable energy efficient supercapacitor electrode material. Carbon. 182, 144–154 (2021)

    Article  CAS  Google Scholar 

  56. N. Kitchamsetti, D. Kim, Facile synthesis of hierarchical core–shell heterostructured ZnO/SnO2@ NiCo2O4 nanorod sheet arrays on carbon cloth for high performance quasi-solid-state asymmetric supercapacitors. J. Mater. Res. Technol. 21, 590–603 (2022)

    Article  CAS  Google Scholar 

  57. X. Li et al., Cactus-like ZnS/Ni3S2 hybrid with high electrochemical performance for supercapacitors. J. Alloys Compd. 753, 508–516 (2018)

    Article  CAS  Google Scholar 

  58. C. Wei et al., Self-template synthesis of double shelled ZnSN–iS1. 97 hollow spheres for electrochemical energy storage. Appl. Surf. Sci. 435, 993–1001 (2018)

    Article  CAS  Google Scholar 

  59. S. Asaithambi et al., Preparation of Fe–SnO2@ CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis. J. Energy Storage 36, 102402 (2021)

    Article  Google Scholar 

  60. S. Asaithambi et al., The bifunctional performance analysis of synthesized ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications. J. Alloys Compd. 866, 158807 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding to be declared to support this project.

Author information

Authors and Affiliations

Authors

Contributions

KR: wrote the original paper, designed the experiments, and conducted the whole synthesis work. MZUS, SAA, MA, MSUS: characterize the samples and analyze the data. HH: writing—review and editing. MS: writing—review and editing. AS: co-supervision, writing—review, and editing. NH: writing—review, editing, supervision. 

Corresponding authors

Correspondence to A. Shah, Muhammad Sajjad or Najmul Hassan.

Ethics declarations

Conflict of interest

The author declares no conflict to be declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, K., Shah, M.Z.U., Shah, A. et al. Electrochemical performance evaluation of a newly developed ZnS–SnO2 composite in an aqueous electrolyte. J Mater Sci: Mater Electron 34, 1717 (2023). https://doi.org/10.1007/s10854-023-11124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11124-z

Navigation