Skip to main content

Advertisement

Log in

Effect of alkaline electrolyte concentration on energy storage of core–shell structured MoSe2-PANI as supercapacitor electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum selenide (MoSe2) has attracted considerable attention for supercapacitor due to its comparatively high conductivity and large capacity compared to other transition metal dichalcogenides (TMDs). Therefore, we report core–shell structured composite materials of MoSe2 hollow microspheres and polyaniline (PANI) rods by silica template hydrothermal method further improve the electrochemical energy storage performance. The structure has been demonstrated by SEM and TEM. The electrochemical properties of the composite material electrode at different KOH electrolyte concentrations was studied and the energy storage mechanism during charge and discharge was explored. In 1 M KOH electrolyte solution, the galvanostatic charge–discharge (GCD) analysis revealed that the MoSe2-PANI possesses a high specific capacitance of 146.5 F g−1 (obtained at a current density of 0.3 A g−1), an energy density of 22.16 Wh kg−1, and a power density of 198 W kg−1. Therefore, this study provides a new idea for the combination of MoSe2 and conductive polymers, and effectively expands the application of MoSe2-PANI composite in alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. K. Poonam, A. Sharma, S.K. Arora, Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019). https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  2. M.L. Guan, Q.W. Wang, X. Zhang, J. Bao, X.Z. Gong, Y.W. Liu, Two-dimensional transition metal oxide and hydroxide-based hierarchical architectures for advanced supercapacitor materials. Front. Chem. 8, 390 (2020)

    Article  CAS  Google Scholar 

  3. D. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Metal-organic framework-based materials for hybrid supercapacitor application. Coordin. Chem. Rev. 404, 213093 (2020). https://doi.org/10.1016/j.ccr.2019.213093

    Article  CAS  Google Scholar 

  4. B. Xu, H. Zhang, H. Mei, D. Sun, Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordin. Chem. Rev. 420, 213438 (2020). https://doi.org/10.1016/j.ccr.2020.213438

    Article  CAS  Google Scholar 

  5. N. Kumar, L. Pradhan, B.K. Jena, Recent progress on novel current collector electrodes for energy storage devices: supercapacitors. Wires. Energy Environ. 11, 1–24 (2022). https://doi.org/10.1002/wene.415

    Article  CAS  Google Scholar 

  6. P. Pransisco, M.S. Balbir Singh, M. Shuaib, M.F. Shukur, E. Joseph, 3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis 3D-graphen/flugasche abfallmaterial fur hybrid-superkondensato relektrode: spezifische Kapazitatsanalyse. Materialwiss. Werkst. 51, 713–718 (2020). https://doi.org/10.1002/mawe.201900249

    Article  CAS  Google Scholar 

  7. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1, 2817–2827 (2019). https://doi.org/10.1039/c9na00345b

    Article  Google Scholar 

  8. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, S.J. Kim, Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim. Acta 295, 591–598 (2019). https://doi.org/10.1016/j.electacta.2018.10.191

    Article  CAS  Google Scholar 

  9. E.A. Marseglia, Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 3, 177–216 (1983). https://doi.org/10.1080/01442358309353343

    Article  CAS  Google Scholar 

  10. S. Liu, X. Lv, G. Liu, C. Li, K. Thummavichaia, Z. Li, L. Zhang, Z. Bin, N. Wang, Y. Zhu, In-situ fabrication of Ni(x)Se(y)/MoSe(2) hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. J. Colloid Interface Sci. 617, 611–619 (2022). https://doi.org/10.1016/j.jcis.2022.03.012

    Article  CAS  Google Scholar 

  11. X. Zhu, X. Fan, J. Gao, S. Qiu, L. Zhang, L. Gu, C. Wang, K. Wang, Y. Mao, Controllable construction of Ag/MoSe2 hybrid architectures for efficient hydrogen evolution and advanced lithium anode. Chem. Eng. Sci. 233, 116404 (2021). https://doi.org/10.1016/j.ces.2020.116404

    Article  CAS  Google Scholar 

  12. L. Wu, Q. Li, C. Yang, Y. Chen, Z. Dai, B. Yao, X. Zhang, X. Cui, Ternary TiO2/MoSe2/γ-graphyne heterojunctions with enhanced photocatalytic hydrogen evolution. J. Mater. Sci. Mater. Electron. 31, 8796–8804 (2020). https://doi.org/10.1007/s10854-020-03414-7

    Article  CAS  Google Scholar 

  13. Y. Cheng, J. Zhang, X. Xiong, C. Chen, J. Zeng, Z. Kong, H. Wang, J. Xi, Y.J. Yuan, Z. Ji, High photocatalytic and photoelectrochemical performances of the CuSe/MoSe2 2D/2D face-to-face heterojunction photocatalyst. J. Alloys Compd. 870, 159540 (2021). https://doi.org/10.1016/j.jallcom.2021.159540

    Article  CAS  Google Scholar 

  14. X. Yuan, B. Zhou, X. Zhang, Y. Li, L. Liu, Hierarchical MoSe2 nanoflowers used as highly efficient electrode for dye-sensitized solar cells. Electrochim. Acta 283, 1163–1169 (2018). https://doi.org/10.1016/j.electacta.2018.06.092

    Article  CAS  Google Scholar 

  15. C. Hunsur Ravikumar, S. Ramu, S. Mohan, R.G. Balakrishna, MoSe2 nanoflowers as a counter electrode for quantum dots sensitized solar cells. J. Mater. Sci. Mater. Electron. 33, 12201–12209 (2022). https://doi.org/10.1007/s10854-022-08180-2

    Article  CAS  Google Scholar 

  16. X. Ni, Z. Cui, H. Luo, H. Chen, C. Liu, Q. Wu, A. Ju, Hollow multi-nanochannel carbon nanofibers@MoSe2 nanosheets composites as flexible anodes for high performance lithium-ion batteries. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126249

    Article  Google Scholar 

  17. M. Manuraj, S. Jyothilakshmi, K.N. Narayanan Unni, R.B. Rakhi, MoSe2 nanoflowers as efficient electrode materials for supercapacitors. J. Mater. Sci. Mater. Electron. 31, 20571–20577 (2020). https://doi.org/10.1007/s10854-020-04577-z

    Article  CAS  Google Scholar 

  18. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012). https://doi.org/10.1021/nl302584w

    Article  CAS  Google Scholar 

  19. E.S. Sowbakkiyavathi, V. Murugadoss, R. Sittaramane, S. Angaiah, Development of MoSe2/PANI composites nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. J. Solid State Electrochem. 24, 2289–2300 (2020). https://doi.org/10.1007/s10008-020-04728-6

    Article  CAS  Google Scholar 

  20. H. Mittal, A. Kumar, M. Khanuja, In-situ oxidative polymerization of aniline on hydrothermally synthesized MoSe2 for enhanced photocatalytic degradation of organic dyes. J. Saudi Chem. Soc. 23, 836–845 (2019). https://doi.org/10.1016/j.jscs.2019.02.004

    Article  CAS  Google Scholar 

  21. S.A. Ansari, H. Fouad, S.G. Ansari, M.P. Sk, M.H. Cho, Mechanically exfoliated MoS(2) sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. J. Colloid Interface Sci. 504, 276–282 (2017). https://doi.org/10.1016/j.jcis.2017.05.064

    Article  CAS  Google Scholar 

  22. S. Upadhyay, O.P. Pandey, Synthesis of layered 2H–MoSe2 nanosheets for the high-performance supercapacitor electrode material. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157522

    Article  Google Scholar 

  23. S.K. Balasingam, J.S. Lee, Y. Jun, Few-layered MoSe2 nanosheets as an advanced electrode material for supercapacitors. Dalton T. 44, 15491–15498 (2015). https://doi.org/10.1039/c5dt01985k

    Article  CAS  Google Scholar 

  24. A. Alam, G. Saeed, S. Lim, One-step synthesis of 2D–2D Co(OH)2–MoSe2 hybrid nanosheets as an efficient electrode material for high-performance asymmetric supercapacitor. J. Electroanal. Chem. 879, 114775 (2020)

    Article  CAS  Google Scholar 

  25. D. Vikraman, S. Hussain, K. Karuppasamy, A. Feroze, A. Kathalingam, A. Sanmugam, S.H. Chun, J. Jung, H.S. Kim, Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B-environ. 264, 118531 (2020). https://doi.org/10.1016/j.apcatb.2019.118531

    Article  CAS  Google Scholar 

  26. H. Guo, J. Ning, B. Wang, X. Feng, M. Xia, D. Wang, Y. Jia, J. Zhang, Y. Hao, Sodium ion-intercalated nanoflower 1T–2H MoSe2–graphene nanocomposites as electrodes for all-solid-state supercapacitors. J. Alloy. Compd. 853, 157116 (2021). https://doi.org/10.1016/j.jallcom.2020.157116

    Article  CAS  Google Scholar 

  27. B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019). https://doi.org/10.1016/j.cej.2018.08.185

    Article  CAS  Google Scholar 

  28. S.S. Karade, B.R. Sankapal, Two dimensional cryptomelane like growth of MoSe2 over MWCNTs: symmetric all-solid-state supercapacitor. J. Electroanal. Chem. 802, 131–138 (2017). https://doi.org/10.1016/j.jelechem.2017.08.017

    Article  CAS  Google Scholar 

  29. Y. Liu, W. Li, X. Chang, H. Chen, X. Zheng, J. Bai, Z. Ren, MoSe2 nanoflakes-decorated vertically aligned carbon nanotube film on nickel foam as a binder-free supercapacitor electrode with high rate capability. J. Colloid. Interf. Sci. 562, 483–492 (2020). https://doi.org/10.1016/j.jcis.2019.11.089

    Article  CAS  Google Scholar 

  30. J. Shen, J. Wu, L. Pei, M.-T.F. Rodrigues, Z. Zhang, F. Zhang, X. Zhang, P.M. Ajayan, M. Ye, CoNi2S4-Graphene-2D-MoSe2 as an advanced electrode material for supercapacitors. Adv. Energy Mater. 6, 1600341 (2016). https://doi.org/10.1002/aenm.201600341

    Article  CAS  Google Scholar 

  31. H. Wang, J. Lu, J. Liang, J. Yu, M. Yan, C. Wu, Evolution from core-shell, yolk-shell to hollow structure of hierarchical SiO2@MoSe2@FeNi3 for enhanced electromagnetic wave absorption. J. Alloys Compd (2016). https://doi.org/10.1016/j.jallcom.2021.161020

    Article  Google Scholar 

  32. X. Chen, X. Guo, L. Jia, X. Wang, K. Song, C. Zuo, R. Yang, J. Wang, Large-scale fabrication of 3D hierarchical MoSe2 hollow sphere arrays with like-Pacific Plate architecture for high-performance hydrogen evolution reaction. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab37ba

    Article  Google Scholar 

  33. S.G. Burragoni, G. Koyyada, S.V.P. Vattikuti, N.D. Nam, J.H. Kim, One-pot synthesis of flower-like MoSe2 nanoflakes for photocatalytic hydrogen evolution and methanol oxidation. Mater. Lett. 282, 128678 (2021). https://doi.org/10.1016/j.matlet.2020.128678

    Article  CAS  Google Scholar 

  34. G. He, Y. Mi, D. Wang, B. Zhang, D. Zheng, Y. Bai, Z. Shi, Synthesis methods and applications of semiconductor material ZnWO4 with multifunctions and multiconstructions. Energy Technol. 9, 2100733 (2021)

    Article  CAS  Google Scholar 

  35. M.E. Józefowicz, A.J. Epstein, J.P. Pouget, J.G. Masters, A.G. Macdiarmid, X-ray structure of polyanilines. Synth. Met. 41, 723–726 (1991). https://doi.org/10.1016/0379-6779(91)91170-F

    Article  Google Scholar 

  36. S. Bhadra, D. Khastgir, Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym. Test. 27, 851–857 (2008). https://doi.org/10.1016/j.polymertesting.2008.07.002

    Article  CAS  Google Scholar 

  37. A.W. Burton, K. Ong, T. Rea, I.Y. Chan, On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater. 117, 75–90 (2009). https://doi.org/10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  38. S.K. Rahul, Arora, MoSe2 nanosheets as an efficient electrode material for supercapacitors. Mater. Today: Proc. 54, 728–732 (2022). https://doi.org/10.1016/j.matpr.2021.10.445

    Article  CAS  Google Scholar 

  39. S. Upadhyay, O.P. Pandey, Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes. Electrochim. Acta 412, 140109 (2022). https://doi.org/10.1016/j.electacta.2022.140109

    Article  CAS  Google Scholar 

  40. M. Jiang, J.J. Zhang, M.H. Wu, W.J. Jian, H.T. Xue, Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J. Mater. Chem. A 4, 14949–14953 (2016). https://doi.org/10.1039/c6ta07020e

    Article  CAS  Google Scholar 

  41. C. Tan, W. Zhao, A. Chaturvedi, Z. Fei, Z. Zeng, Preparation of single-Layer MoS2xSe2(1–x)and MoxW1-xS2Nanosheets with high-concentration metallic 1T phase. Small 12, 1866–1874 (2016). https://doi.org/10.1002/smll.201600014

    Article  CAS  Google Scholar 

  42. M. Kim, C. Lee, J. Jang, Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Adv. Funct. Mater. 24, 2489–2499 (2014). https://doi.org/10.1002/adfm.201303282

    Article  CAS  Google Scholar 

  43. X.L. Wang, Y.J. Gong, G. Shi, W.L. Chow, K. Keyshar, Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125–5131 (2014). https://doi.org/10.1021/nn501175k

    Article  CAS  Google Scholar 

  44. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013). https://doi.org/10.1364/OE.21.004908

    Article  CAS  Google Scholar 

  45. R.R. Kharade, P.B. Patil, K.V. Khot, V.B. Ghanwat, V.V. Kondalkar, C.S. Bagade, N.D. Desai, R.M. Mane, P.N. Bhosale, Controlled electrochemical polymerization strategies for electroactive polyaniline thin films. Macromol. Symp. 362, 7–10 (2016). https://doi.org/10.1002/masy.201400262

    Article  CAS  Google Scholar 

  46. J. Yang, C. Wang, H. Ju, Y. Sun, S. Xing, J. Zhu, Q. Yang, Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 27, 1703864 (2017). https://doi.org/10.1002/adfm.201703864

    Article  CAS  Google Scholar 

  47. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva-Acuña, Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015). https://doi.org/10.1039/c5tc02043c

    Article  CAS  Google Scholar 

  48. K.J. Huang, J.Z. Zhang, J.L. Cai, Preparation of porous layered molybdenum selenide-graphene composite on Ni foam for high-performance supercapacitor and electrochemical sensing. Electrochim. Acta 180, 770–777 (2015). https://doi.org/10.1016/j.electacta.2015.09.016

    Article  CAS  Google Scholar 

  49. L. Wang, L. Yue, X. Zang, H. Zhu, X. Hao, Z. Leng, X. Liu, S. Chen, Synthesis of 3D alpha-MnMoO4 hierarchical architectures for high-performance supercapacitor applications. CrystEngComm 18, 9286–9291 (2016). https://doi.org/10.1039/c6ce02051h

    Article  CAS  Google Scholar 

  50. J. Yesuraj, V. Elumalai, M. Bhagavathiachari, A.S. Samuel, E. Elaiyappillai, P.M. Johnson, A facile sonochemical assisted synthesis of α-MnMoO4 /PANI nanocomposite electrode for supercapacitor applications. J. Electroanal. Chem. 797, 78–88 (2017). https://doi.org/10.1016/j.jelechem.2017.05.019

    Article  CAS  Google Scholar 

  51. M.R. Pallavolu, A.N. Banerjee, R.R. Nallapureddy, S.W. Joo, Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor. J. Mater. Sci. Technol. 96, 332–344 (2022). https://doi.org/10.1016/j.jmst.2021.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201749), an Open Fund of Key Laboratory of Petroleum Fine Chemicals in Shaanxi Province (SH1420SKF0003 and SH1516SKF0002), and the Innovation and Entrepreneurship Training Program for College Students in Shaanxi Province (4191). The authors would thank the Analytical Testing Center and Functional Materials Laboratory, Xi'an University of Architecture and Technology.

Funding

The Fund of the State Key Laboratory of Solidification Processing in NWPU, SKLSP201749, Geping He, Open Fund of Key Laboratory of Petroleum Fine Chemicals in Shaanxi Province, SH1420SKF0003, Geping He,SH1516SKF0002, Geping He, the Innovation and Entrepreneurship Training Program for College Students in Shaanxi Province, 4191, Geping He.

Author information

Authors and Affiliations

Authors

Contributions

DZ: syntheses of samples, investigation, data curation, formal analysis, writing—original draft, and writing—review & editing. GH: conceptualization, methodology, formal analysis, validation, writing—review & editing, writing—original draft, resources, and supervision. YM: writing—review & editing. YL, HZ, MW: formal analysis and investigation. HH: SEM, TEM, XRD, and XPS testing. HY: electrochemical testing.

Corresponding author

Correspondence to Geping He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3079 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., He, G., Mi, Y. et al. Effect of alkaline electrolyte concentration on energy storage of core–shell structured MoSe2-PANI as supercapacitor electrode materials. J Mater Sci: Mater Electron 34, 1734 (2023). https://doi.org/10.1007/s10854-023-11123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11123-0

Navigation