Skip to main content
Log in

Study on dielectric relaxation and current–voltage characteristics of Mn-doped ZrO2 nanocrystalline solid solution at and above room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, we report dielectric behavior and current–voltage characteristics of manganese (Mn)-doped zirconia nanocomposite in the 298 < T < 523 K temperature range. It is observed that the electrical response is controlled by the Mn concentration present in the sample. Both ac and dc conductivities of the prepared samples are observed to increase as the temperature rises. This suggests that the prepared samples behave in a semiconducting nature. Also, the ac conductivities of the samples increase with the frequency, which is prominent beyond the hopping frequency. The complex dielectric permittivity decreases with frequency and attains saturation at high-frequency regions. The current–voltage study shows that trap height increases with temperature and sample behavior is governed by the Poole Frenkel Emission model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Tanabe, Mater. Chem. Phys. 13, 347 (1985)

    Article  CAS  Google Scholar 

  2. Novotny (ed.), Science of Ceramic Interfaces 11, Elsevier Science, Amsterdam, 1994.

  3. R.C. Garvie, R.H.J. Hannik, R.T. Pascoe, Nature 258, 703 (1975)

    Article  CAS  Google Scholar 

  4. W.E. Lee, W.M. Rainforth, Ceramic Microstructures, Property Control by Processing (Chapman & Hall, London, 1994)

    Google Scholar 

  5. A. Chatterjee, S.K. Pradhan, A. Datta, M. De, D. Chakravorty, J. Mater. Res. 9, 263 (1994)

    Article  CAS  Google Scholar 

  6. P.C. Rivas, M.C. Caracoche, J.A. Martinez, A.M. Rodriguez, R. Caruso, N. Pellegri, O. de Sanctis, J. Mater. Res. 12, 493 (1997)

    Article  CAS  Google Scholar 

  7. R.E. Juárez, D.G. Lamas, G.E. Lascalea, N.E. Walsöe de Reca, J. Europ, Ceram. Soc. 20, 133 (2000)

    Article  Google Scholar 

  8. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  9. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  10. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  11. R. Ren, Z. Yang, L.L. Shaw, J. Mat. Sci. 35, 6015 (2000)

    Article  CAS  Google Scholar 

  12. H. Dutta, A. Sen, S.K. Pradhan, J. Alloys Compd. 501, 198 (2010)

    Article  CAS  Google Scholar 

  13. S. Begin-Colin, T. Girot, G. Le Caer, A. Mocellin, J. Solid State Chem. 149, 41 (2000)

    Article  CAS  Google Scholar 

  14. S. Sain, S.K. Pradhan, J. Alloys Compd. 509, 4176 (2011)

    Article  CAS  Google Scholar 

  15. S.K. Manik, H. Dutta, S.K. Pradhan, Mater. Chem. Phys. 82, 848 (2003)

    Article  CAS  Google Scholar 

  16. S. Saha, H. Dutta, A.K. Meikap, S.K. Pradhan, Mater. Res. Bull. 48, 3892–3900 (2013)

    Article  CAS  Google Scholar 

  17. S.K.R.S. Sankaranarayanan, E. Kaxiras, S. Ramanathan, Energy Environ. Sci. 2, 1196 (2009)

    Article  CAS  Google Scholar 

  18. J. Ramirez-Gonzalez, A.R. West, J. Eur. Ceram. Soc. 40, 5602 (2020)

    Article  CAS  Google Scholar 

  19. G. Chiodelli, G. Flor, M. Scagliotti, Solid State Ionics 91, 109 (1996)

    Article  CAS  Google Scholar 

  20. S. Saha, A. Nandy, S. Pradhan, A.K. Meikap, Physica B 479, 67–73 (2015)

    Article  CAS  Google Scholar 

  21. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    Article  CAS  Google Scholar 

  22. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, A. Loidl, Phys. Rev. B 61, 3922 (2000)

    Article  CAS  Google Scholar 

  23. D. Ming, J.M. Reau, J. Ravez, J. Gitae, P. Hagenmuller, J. Solid State Chem. 116, 185 (1995)

    Article  CAS  Google Scholar 

  24. B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904 (2003)

    Article  CAS  Google Scholar 

  25. Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, M. Maglione, J. Appl. Phys. 100, 114111 (2006)

    Article  Google Scholar 

  26. M.B. Bechir, M.H. Dhaou, RSC Adv. 11, 21767–21780 (2021)

    Article  Google Scholar 

  27. A.K. Das, C.K. Raul, R. Karmakar, A.K. Meikap, Phys. Lett. A 407, 127455 (2021)

    Article  CAS  Google Scholar 

  28. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Group, London, 1983)

    Google Scholar 

  29. D.P. Almond, C.C. Hunter, A.R. Weas, J. Mater. Sci. 19, 3236–3248 (1984)

    Article  CAS  Google Scholar 

  30. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  31. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  32. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  33. P. Extance, S.R. Elliot, E.A. Davis, Phys. Rev. B 32, 8148 (1985)

    Article  CAS  Google Scholar 

  34. P. Gong, Y. Yang, W. Ma, X. Fang, X. Jing, Y. Jia, M. Cao, Physica E 128, 114578 (2021)

    Article  CAS  Google Scholar 

  35. S. Saha, A. Nandy, A.K. Meikap, S.K. Pradhan, Mater. Res. Bull. 68, 66–74 (2015)

    Article  CAS  Google Scholar 

  36. N.F. Mott, Phil. Mag. 19, 835–852 (1969)

    Article  CAS  Google Scholar 

  37. T. Uma, T. Mahalingam, U. Stimming, Mater. Chem. Phys. 85, 131–136 (2004)

    Article  CAS  Google Scholar 

  38. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

  39. A.K. Das, R. Hatada, W. Ensinger, S. Flege, K. Baba, A.K. Meikap, J. Alloys Comp. 758, 194–205 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of the CoE at NIT Durgapur, the Government of India, and DST (Project No. EMR/2016/001409) for this study.

Funding

This work is supported by the Department of Science and Technology (IN), EMR/2016/001409 to A. K. Meikap.

Author information

Authors and Affiliations

Authors

Contributions

SS contributed to investigation, formal analysis, writing—original draft, and validation. AN contributed to resources and validation. SKP contributed to supervision, formal analysis, resources, and validation. AKM contributed to supervision, conceptualization, methodology, visualization, validation, and project administration.

Corresponding author

Correspondence to A. K. Meikap.

Ethics declarations

Conflict of interest

Our attention has not been drawn to any conflicts.

Data availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Nandy, A., Pradhan, S.K. et al. Study on dielectric relaxation and current–voltage characteristics of Mn-doped ZrO2 nanocrystalline solid solution at and above room temperature. J Mater Sci: Mater Electron 34, 1701 (2023). https://doi.org/10.1007/s10854-023-11115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11115-0

Navigation