Skip to main content
Log in

Electron conduction properties of emitting layer containing nanoaggregates in crystalline OLEDs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Since crystalline organic materials possess high carrier mobility, good thermal stability, and chemical stability, Crystalline organic light-emitting diodes (C-OLEDs) exhibit superior characteristics of low turn-on voltage, low operating voltage, high light output, high power efficiency, and low Joule heat loss, demonstrating the great potential of C-OLEDs in the OLED field. C-OLED, which consists of a crystalline host matrix (CHM) and “hot excitonic” nanoaggregates (HENA) sensitizer, is a newly proposed promising light-emitting structure. Compared to other crystalline OLEDs, the CHM-HENA OLED has a higher device efficiency owing to heterojunction effect between crystalline host matrix and “hot exciton” nanoaggregates. However, it is unknown how nanoaggregates affect the electron conductivity of devices. In this paper, we adjust the size of the nanoaggregates and examine the growth behavior of nanoaggregates. There is a critical value for the growth of PAC nanoaggregates when the nominal deposition thickness (NDT) of PAC nanoaggregates is between 0.8 and 1.0 nm. By investigating conductivity with metal-oxide-semiconductor (MOS) structure diodes, the size of nanoaggregates (NDT of approximately 0.8 nm) with the best electrical conductivity properties is found. The current of the CHM-HENA OLEDs with different NDT of PAC nanoaggregates and the corresponding the CHM-HENA MOS-structure diodes conductance follows the same trend. The results of this work will greatly assist the conductance study of CHM-HENA OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data (images and measurement files) supporting the findings of this study are available from the corresponding authors, Bo Yu and Feng Zhu, upon request.

References

  1. J. Kido, M. Kimura, K. Nagai, Multilayer white light-emitting organic electroluminescent device. Science 267, 1332–1334 (1995)

    Article  CAS  Google Scholar 

  2. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009)

    Article  CAS  Google Scholar 

  3. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Article  CAS  Google Scholar 

  4. R.J. Li, W.P. Hu, Y.Q. Liu, D.B. Zhu, Micro- and nanocrystals of organic semiconductors. Acc. Chem. Res. 43, 529–540 (2010)

    Article  CAS  Google Scholar 

  5. H. Nakanotani, C. Adachi, Organic light-emitting diodes containing multilayers of organic single crystals. Appl. Phys. Lett. 96, 3 (2010)

    Article  Google Scholar 

  6. D. Liu, F. Zhu, D.H. Yan, Crystalline organic thin films for crystalline OLEDs (I): orientation of phenanthroimidazole derivatives. J. Mater. Chem. C 10, 2663–2670 (2022)

    Article  CAS  Google Scholar 

  7. K.H. Kim, J.L. Liao, S.W. Lee, B. Sim, C.K. Moon, G.H. Lee, H.J. Kim, Y. Chi, J.J. Kim, Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Adv. Mater. 28, 2526–2532 (2016)

    Article  CAS  Google Scholar 

  8. Z. Bao, A.J. Lovinger, A. Dodabalapur, Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl. Phys. Lett. 69, 3066–3068 (1996)

    Article  CAS  Google Scholar 

  9. J. Liu, H.T. Zhang, H.L. Dong, L.Q. Meng, L.F. Jiang, L. Jiang, Y. Wang, J.S. Yu, Y.M. Sun, W.P. Hu, A.J. Heeger, High mobility emissive organic semiconductor. Nat. Commun. 6, 10032 (2015)

    Article  CAS  Google Scholar 

  10. X.X. Yang, X. Feng, J.H. Xin, P.L. Zhang, H.B. Wang, D.H. Yan, Highly efficient crystalline organic light-emitting diodes. J. Mater. Chem. C 6, 8879–8884 (2018)

    Article  CAS  Google Scholar 

  11. Y.J. Wan, J. Deng, W.L. Wu, J.D. Zhou, Q. Niu, H.Y. Li, H.K. Yu, C. Gu, Y.G. Ma, Efficient organic light-emitting transistors based on high-quality ambipolar single crystals. ACS Appl. Mater. Interfaces 12, 43976–43983 (2020)

    Article  CAS  Google Scholar 

  12. T. Takenobu, S.Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008)

    Article  Google Scholar 

  13. A.L. Briseno, R.J. Tseng, M.M. Ling, E.H.L. Falcao, Y. Yang, F. Wudl, Z.N. Bao, High-performance organic single-crystal transistors on flexible substrates. Adv. Mater. 18, 2320–2324 (2006)

    Article  CAS  Google Scholar 

  14. S.B. Cui, Y.F. Hu, Z.D. Lou, R. Yi, Y.B. Hou, F. Teng, Light emitting field-effect transistors with vertical heterojunctions based on pentacene and tris-(8-hydroxyquinolinato) aluminum. Org. Electron. 22, 51–55 (2015)

    Article  CAS  Google Scholar 

  15. A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern, Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003)

    Article  Google Scholar 

  16. Y.S. Zhao, C.A. Di, W.S. Yang, G. Yu, Y.Q. Liu, J. Yao, Photoluminescence and electroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physical vapor deposition. Adv. Funct. Mater. 16, 1985–1991 (2006)

    Article  CAS  Google Scholar 

  17. X.J. Li, Y.X. Xu, F. Li, Y. Ma, Organic light-emitting diodes based on an ambipolar single crystal. Org. Electron. 13, 762–766 (2012)

    Article  CAS  Google Scholar 

  18. M. Pope, P. Magnante, H.P. Kallmann, Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042–2043 (1963)

    Article  CAS  Google Scholar 

  19. H. Wang, F. Zhu, J. Yang, Y. Geng, D. Yan, Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Adv. Mater. 19, 2168–2171 (2007)

    Article  CAS  Google Scholar 

  20. J. Yang, D. Yan, Weak epitaxy growth of organic semiconductor thin films. Chem. Soc. Rev. 38, 2634–2645 (2009)

    Article  CAS  Google Scholar 

  21. L. Liu, C.L. Li, Z.Q. Li, P.F. Sun, F. Zhu, Y. Wang, D. Yan, Highly oriented crystalline thin film with high electroluminescence performance fabricated by weak epitaxy growth. Org. Electron. 84, 105806 (2020)

    Article  CAS  Google Scholar 

  22. J.H. Xin, P.F. Sun, F. Zhu, Y. Wang, D. Yan, Doped crystalline thin-film deep-blue organic light-emitting diodes. J. Mater. Chem. C 9, 2236–2242 (2021)

    Article  CAS  Google Scholar 

  23. J.J. Yang, D.H. Hu, F. Zhu, Y. Ma, D. Yan, High-efficiency blue-emission crystalline organic light-emitting diodes sensitized by “hot exciton” fluorescent nanoaggregates. Sci. Adv. 8, eadd1757 (2022)

    Article  CAS  Google Scholar 

  24. P.F. Sun, D. Liu, F. Zhu, D.H. Yan, An efficient solid-solution crystalline organic light-emitting diode with deep-blue emission. Nat. Photonics (2023). https://doi.org/10.1038/s41566-022-01138-0

    Article  Google Scholar 

  25. E.H. Nicollian, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, Hoboken, 1982)

    Google Scholar 

  26. L. Wang, G. Liu, H. Wang, D. Song, B. Yu, D. Yan, Electrical properties in vanadyl-phthalocyanine-based metal-insulator-semiconductor devices. Appl. Phys. Lett. 91, 153508 (2007)

    Article  Google Scholar 

  27. T. Miyadera, T. Minari, K. Tsukagoshi, H. Ito, Y. Aoyagi, Frequency response analysis of pentacene thin-film transistors with low impedance contact by interface molecular doping. Appl. Phys. Lett. 91, 013512 (2007)

    Article  Google Scholar 

  28. M. Yun, R. Ravindran, M. Hossain, S. Gangopadhyay, U. Scherf, T. Bunnagel, F. Galbrecht, M. Arif, S. Guha, Capacitance-voltage characterization of polyfluorene-based metal-insulator-semiconductor diodes. Appl. Phys. Lett. 89, 013506 (2006)

    Article  Google Scholar 

  29. S. Grecu, M. Bronner, A. Opitz, W. Brutting, Characterization of polymeric metal-insulator-semiconductor diodes. Synth. Met. 146, 359–363 (2004)

    Article  CAS  Google Scholar 

  30. N. Zhao, O. Marinov, G.A. Botton, M.J. Deen, B.S. Ong, Y. Wu, P. Liu, Characterization of MOS structures based on poly (3,3‴-dialkyl-quaterthiophene). IEEE Trans. Electron. Devices 52, 2150–2156 (2005)

    Article  CAS  Google Scholar 

  31. S. Scheinert, G. Paasch, Fabrication and analysis of polymer field-effect transistors. Phys. Status Solidi A 201, 1263–1301 (2004)

    Article  CAS  Google Scholar 

  32. Y. Xu, X. Liang, X. Zhou, P. Yuan, J. Zhou, C. Wang, B. Li, D. Hu, X. Qiao, X. Jiang, L. Liu, S.-J. Su, D. Ma, Y. Ma, Highly efficient blue fluorescent OLEDs based on upper level triplet–singlet intersystem crossing. Adv. Mater. 31, 1807388 (2019)

    Article  Google Scholar 

  33. C.B. Roxlo, B. Abeles, T. Tiedje, Evidence for lattice-mismatch—induced defects in amorphous semiconductor heterojunctions. Phys. Rev. Lett. 52, 1994–1997 (1984)

    Article  CAS  Google Scholar 

  34. M. Morita, K. Tsubouchi, N. Mikoshiba, Measurement of interface-state parameters near the band edge at the Si/SiO2 interface by the conductance method. Appl. Phys. Lett. 33, 745–747 (1978)

    Article  CAS  Google Scholar 

  35. K.C. Kao, W. Hwang, Electrical transport in solids: with particular reference to organic semiconductors. Philos. Mag B 44, 731–733 (1981)

    Google Scholar 

  36. Y. Chen, M. Zhang, X. Zhang, Z. Lei, X. Zhang, L. Hao, Q. Fan, W. Lai, W. Huang, Multilayered phosphorescent polymer light-emitting diodes using a solution-processed n-doped electron transport layer. J. Lumin. 186, 87–92 (2017)

    Article  CAS  Google Scholar 

  37. J.J. Yang, W.T. Zheng, D.H. Hu, F. Zhu, Y.G. Ma, H. Yan, An efficient blue-emission crystalline thin-film OLED sensitized by “Hot Exciton” fluorescent dopant. Adv. Sci. 10, 9 (2023)

    Google Scholar 

  38. R.K. Hallani, V.F. Hamidabadi, A.J. Huckaba, G. Galliani, A. Babaei, M.G. La-Placa, A. Bahari, I. McCulloch, M.K. Nazeeruddin, M. Sessolo, H.J. Bolink, A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes. J. Mater. Chem. C 6, 12948–12954 (2018)

    Article  CAS  Google Scholar 

  39. J.H. Xin, Z.Q. Li, Y.J. Liu, D. Liu, F. Zhu, Y. Wang, Dh. Yan, High-efficiency non-doped deep-blue fluorescent organic light-emitting diodes based on carbazole/phenanthroimidazole derivatives. J. Mater. Chem. C 8, 10185–10190 (2020)

    Article  CAS  Google Scholar 

  40. L. Liu, C.L. Li, Z.Q. Li, P.F. Sun, F. Zhu, Y. Wang, D.H. Yan, Highly oriented crystalline thin film with high electroluminescence performance fabricated by weak epitaxy growth. Org. Electron. 84, 7 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Jilin Yuanhe Electronic Material Co. for their support in preparing materials.

Funding

This work was supported by the National Key R&D Program of China (2017YFA0204704).

Author information

Authors and Affiliations

Authors

Contributions

BY, FZ and DHY initiated and designed the research. JR carried out the growth and characterization of the crystalline thin films. JR prepared the MOS-structure diodes and the C-OLEDs for characterization. All authors discussed the results, prepared and commented on the manuscript. BY, FZ and DHY supervised the project.

Corresponding authors

Correspondence to Bo Yu or Feng Zhu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 889.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Yu, B., Zhu, F. et al. Electron conduction properties of emitting layer containing nanoaggregates in crystalline OLEDs. J Mater Sci: Mater Electron 34, 1711 (2023). https://doi.org/10.1007/s10854-023-11109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11109-y

Navigation