Skip to main content
Log in

Investigation of the structural, thermal, and spectroscopic properties of L-threonine crystal containing Eu3+ ions for use in visible light-emitting devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, L-threonine containing trivalent europium ions (LTHEu) was successfully grown through the slow evaporation method. The LTHEu single crystal exhibit well-defined facets, with dimensions around 5 × 13 × 4 mm. Structural, thermal, and spectroscopic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, X-ray fluorescence (XRF), thermogravimetric analysis, differential thermal analysis, ultraviolet–visible absorption spectroscopy, and photoluminescence spectroscopy. Rietveld refinement of XRD data showed that the LTHEu crystal crystallizes in an orthorhombic system with P212121-space group. The Eu3+ ions promote an expansion effect on the unit cell volume. XRF measurements confirm the presence of the Eu3+-impurities in the L-threonine matrix. In addition, the LTHEu crystal showed thermal stability for temperatures up to 483 K. Spectroscopic analysis revealed light emission with orange color due to the combination of high-intensity bands related to 5D07F1 (orange) and 5D07F2 (red) electronic transitions of Eu3+ ions. The new emission for L-threonine crystal doped with Eu3+ observed in this study expands the range of materials with potential for application in optical devices in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data can be available from the corresponding author (joaogomes.quimico@gmail.com) upon academic reasonable request.

References

  1. K. Zhu, Z. Chen, Y. Wang, H. Liu, Y. Niu, X. Yi, Y. Wang, X. Yuan, G. Liu, (M, Ca)AlSiN3: Eu2+ (M = Sr, Mg) long persistent phosphors prepared by combustion synthesis and applications in displays and optical information storage. J. Lumin. 252, 119288 (2022). https://doi.org/10.1016/j.jlumin.2022.119288

    Article  CAS  Google Scholar 

  2. H. Hu, W. Zhang, Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. (Amst). 28, 536–550 (2006). https://doi.org/10.1016/j.optmat.2005.03.015

    Article  CAS  Google Scholar 

  3. S. Rajyalakshmi, K. Ramachandra Rao, B. Brahmaji et al., Investigations on structural and photoluminescence mechanism of cerium doped L -Histidine hydrochloride mono hydrate single crystals for optical applications. J. Mol. Struct. 1129, 231–238 (2017). https://doi.org/10.1016/j.molstruc.2016.09.069

    Article  CAS  Google Scholar 

  4. S. Rajyalakshmi, K. Ramachandra Rao, B. Brahmaji et al., Optical investigations on Tb3+ doped L-Histidine hydrochloride mono hydrate single crystals grown by low temperature solution techniques. Opt. Mater. (Amst). 54, 74–83 (2016). https://doi.org/10.1016/j.optmat.2016.02.014

    Article  CAS  Google Scholar 

  5. K. Ramachandra Rao, S. Rajyalakshmi, C.S. Kamal et al., Unique optical properties of Eu3+ doped L-histidine hydrochloride mono hydrate single crystals from low temperature growth technique. Spectrochim Acta - Part A Mol Biomol Spectrosc. 176, 52–57 (2017). https://doi.org/10.1016/j.saa.2016.12.039

    Article  CAS  Google Scholar 

  6. B. Brahmaji, S. Rajyalakshmi, C. Satya et al., Optical emissions of Ce3+ doped sulphamic acid single crystals by low temperature unidirectional growth technique. Opt. Mater. (Amst). 64, 100–105 (2017). https://doi.org/10.1016/j.optmat.2016.11.040

    Article  CAS  Google Scholar 

  7. A. Karolin, K. Jayakumari, C.K. Mahadevan, Growth and characterization of pure and Ni2+ doped glycine sodium sulfate crystals. Int. J. Res. Eng. Technol. 02, 646–651 (2013). https://doi.org/10.15623/ijret.2013.0212110

    Article  Google Scholar 

  8. M.H. Fang, Z. Bao, W.T. Huang, R.S. Liu, Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes. Chem. Rev. 122(13), 11474–11513 (2022). https://doi.org/10.1021/acs.chemrev.1c00952

    Article  CAS  Google Scholar 

  9. M. Kim et al., Discovery of a Quaternary Sulfide, Ba2–xLiAlS4: Eu2+, and its potential as a fast-decaying LED phosphor. Chem. Mater. 32, 6697–6705 (2020). https://doi.org/10.1021/acs.chemmater.0c02243

    Article  CAS  Google Scholar 

  10. J.W. Lee et al., Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca–Sr–Ba–Li–Mg–Al–Si–Ge–N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations. Inorg. Chem. 56, 9814–9824 (2017). https://doi.org/10.1021/acs.inorgchem.7b01341

    Article  CAS  Google Scholar 

  11. Y. Zhang et al., Pore-existing Lu3Al5O12: Ce ceramic phosphor: an efficient green color converter for laser light source. J. Lumin. 197, 331–334 (2018). https://doi.org/10.1016/j.jlumin.2018.01.014

    Article  CAS  Google Scholar 

  12. Z. Wang et al., Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors. Chem. Mater. 28, 4024–4031 (2016). https://doi.org/10.1021/acs.chemmater.6b01496

    Article  CAS  Google Scholar 

  13. G. Heliotis et al., Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films. Appl. Phys. Lett. 87, 103505 (2005). https://doi.org/10.1063/1.2039991

    Article  CAS  Google Scholar 

  14. J. Wang et al., Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coord. Chem. Rev. 303, 139–184 (2015). https://doi.org/10.1016/j.ccr.2015.05.008

    Article  CAS  Google Scholar 

  15. O. Yuji, in Structural determination of unstable species, ed. by C.A. Jan, Models mysteries and magic of molecules, (Springer, Berlin Heidelberg, 2008) pp. 109–135

  16. R.E. Marsh, J. Donohue, Crystal structure studies of amino acids and peptides. Adv. Prot. Chem. 22, 235–2561 (1967). https://doi.org/10.1016/S0065-3233(08)60042-X

    Article  CAS  Google Scholar 

  17. M. Fleck, Salts of Amino Acids. Crystallization, Structure and Properties (Springer International Publishing, Cham, Switzerland, 2014), pp. 21–82

    Book  Google Scholar 

  18. B. Bathe, (2003) Microbial production of l-amino acids Springer Science & Business Media, Amsterdam pp. 113–136

  19. S. Zhang et al., A novel cytotoxic ternary copper(II) complex of 1,10-phenanthroline and l-threonine with DNA nuclease activity. J. Inorg. Biochem. 98, 2099–2106 (2004). https://doi.org/10.1016/j.jinorgbio.2004.09.014

    Article  CAS  Google Scholar 

  20. R. Subhashini et al., Growth and characterization of Bis(L-threonine) copper (II) monohydrate single crystals: a semiorganic second order nonlinear optical material. Opt. Mater. (Amst). 62, 357–365 (2016). https://doi.org/10.1016/j.optmat.2016.09.041

    Article  CAS  Google Scholar 

  21. J. Zhu et al., Europium (III) doped LiNa2B5P2O14 phosphor: surface analysis, DFT calculations and luminescent properties. J. Alloys Compd. 822, 153606 (2020). https://doi.org/10.1016/j.jallcom.2019.153606

    Article  CAS  Google Scholar 

  22. J. Qiao et al., Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat. Commun. 10, 1–7 (2019). https://doi.org/10.1038/s41467-019-13293-0

    Article  CAS  Google Scholar 

  23. A. Azhagiri, V. Ponnusamy, R. Satheesh Kumar, A development of new red phosphor based on europium doped as well as substituted Barium Lanthanum Aluminate (BaLaAlO4: Eu3+). Opt. Mater. (Amst) 90, 127–138 (2019). https://doi.org/10.1016/j.optmat.2019.02.024

    Article  CAS  Google Scholar 

  24. H. Zhou et al., Novel ratiometric optical thermometry based on dual luminescent centers from europium doped LiCa3MgV3O12 phosphor. Ceram. Int. 45, 16651–16657 (2019). https://doi.org/10.1016/j.ceramint.2019.05.207

    Article  CAS  Google Scholar 

  25. Z. Rzaczynska et al., The properties and crystal structure of catena-poly[praseodymium(III) -hexaaqua-µ-L-threonine-κ3O, O’, O’’]tricchloride and catena-poly(pentaaqua-µ-L-threonine-κ3O, O’, O’’) europium(III) and ytterbium(III) trichlorides. Pol J Chem 73, 1259–1272 (1999)

    CAS  Google Scholar 

  26. R.C. Santana et al., Growth, EPR and optical absorption spectra of L-threonine single crystals doped with Cu2+ ions. J. Phys. Chem. Solids. 68, 586–593 (2007). https://doi.org/10.1016/j.jpcs.2007.01.0

    Article  CAS  Google Scholar 

  27. K. Kanagasabapathy, R. Rajasekaran, Growth, structural, optical and thermal studies of L-Threonine added zinc(tris) Thiourea Sulphate single crystals. J. Optoelectron. Adv. Mater. 6, 218–224 (2012)

    CAS  Google Scholar 

  28. J. Oliveira Neto, G, et al., Structural, vibrational, thermal, and optical properties of L-threonine crystals containing Ce3+ ions. J. Mol. Struct. 1254, 132316 (2022). https://doi.org/10.1016/j.molstruc.2021.132316

    Article  CAS  Google Scholar 

  29. M. Zhu, Q. Ma, N. Guo, Optical thermometry based on europium doped self-activated dual-emitting LiCa3ZnV3O12 phosphor. Spectrochim Acta - Part A Mol Biomol Spectrosc. 271, 120922 (2022). https://doi.org/10.1016/j.saa.2022.120922

    Article  CAS  Google Scholar 

  30. S.K. Pathak, A. Verma, A. Verma, Structural and photoluminescence properties of Eu3+ activated ZnAl2O4 orange-red phosphor. J. Mater. Sci. Mater. Electron. 31, 16137–16149 (2020). https://doi.org/10.1007/s10854-020-03715-x

    Article  CAS  Google Scholar 

  31. S. Khatri et al., Photophysical, optical and lasing analysis of fluorinated β-keto carboxylate europium(III) complexes. Mater. Res. Express. 1, 1–33 (2019). https://doi.org/10.1088/2050-6120/ac98f5

    Article  CAS  Google Scholar 

  32. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  33. G.R. Kumar et al., Growth, structural, optical and thermal studies of non-linear optical L-threonine single crystals. J. Cryst. Growth. 267, 213–217 (2004). https://doi.org/10.1016/j.jcrysgro.2004.03.073

    Article  CAS  Google Scholar 

  34. P.R. Selvin, Principles and biophysical applications of lanthanide-based probes. Biophys. Biomol. Struct. 31, 275–302 (2002). https://doi.org/10.1146/annurev.biophys.31.101101.140927

    Article  CAS  Google Scholar 

  35. A.L. Patterson, The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  36. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  37. V.M. Malhotra, S. Jasty, R. Mu, FT-IR spectra of Water in microporous pellets and water’s desorption kinetics. Appl. Spectrosc. 43(4), 638–645 (1989). https://doi.org/10.1366/0003702894202643

    Article  CAS  Google Scholar 

  38. K.A. Guzzetti et al., Structural and vibrational study on zwitterions of L -threonine in aqueous phase using the FT-Raman and SCRF calculations. J. Mol. Struct. 1045, 171–179 (2013). https://doi.org/10.1016/j.molstruc.2013.04.016

    Article  CAS  Google Scholar 

  39. Y.C. Lien, W.W. Nawar, Thermal decomposition of some amino acids. valine, leucine and lsoleucine. J. Food Sci. 39(5), 911–913 (1974). https://doi.org/10.1111/j.1365-2621.1974.tb07274.x

    Article  CAS  Google Scholar 

  40. G.Q. Zhong, Q. Zhong, Solid–solid synthesis, characterization, thermal decomposition and antibacterial activities of zinc(II) and nickel(II) complexes of glycine–vanillin Schiff base ligand. Green. Chem. Lett. Rev. 3, 236–242 (2014). https://doi.org/10.1080/17518253.2014.927008

    Article  CAS  Google Scholar 

  41. N. Kiran, Eu3+ ion doped sodium-lead borophosphate glasses for red light emission. J. Mol. Struct. 1065–1066, 93–98 (2014). https://doi.org/10.1016/j.molstruc.2014.02.047

    Article  CAS  Google Scholar 

  42. K. Swapna et al., Luminescence characterization of Eu3+ doped zinc Alumino Bismuth Borate glasses for visible red emission applications. J. Lumin. 156, 80–86 (2014). https://doi.org/10.1016/j.jlumin.2014.07.022

    Article  CAS  Google Scholar 

  43. J.K. Park et al., Photoluminescence properties of the Eu3+ in La2O3. J. Mater. Sci. Lett. 20, 2231–2232 (2001). https://doi.org/10.1023/A:1017997320503

    Article  CAS  Google Scholar 

  44. T. Samuel et al., Photoluminescence enhancement and energy transfer mechanism of Bismuth added LaGaO3:Eu nanophosphor for display applications. Optik (Stuttg). 127, 10575–10587 (2016). https://doi.org/10.1016/j.ijleo.2016.08.063

    Article  CAS  Google Scholar 

  45. S.J. Dhoble et al., Synthesis of Sr5SiO4Cl6: Eu3+, NaAlSiO4: Tb3+ and Sr2P2O7: Dy3+ phosphors for solid state lighting applications. Optik (Stuttg) 126, 1527–1533 (2015). https://doi.org/10.1016/j.ijleo.2015.04.042

    Article  CAS  Google Scholar 

  46. S. Zhang J, Study on UV excitation properties of Eu3+-doped rare-earth phosphates. J. Lumin. 122–123, 500–502 (2007). https://doi.org/10.1016/j.jlumin.2006.01.218

    Article  CAS  Google Scholar 

  47. A. Mezzi et al., Structure and composition of electrospun titania nanofibres doped with Eu. Surf. Interface Anal. 42, 572–575 (2010). https://doi.org/10.1002/sia.3275

    Article  CAS  Google Scholar 

  48. A.K. Parchur et al., Luminescence properties of Eu3+ doped CaMoO4 nanoparticle. Dalton Trans. 40(29), 7595–7601 (2011). https://doi.org/10.1039/C1DT10878F

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful the Brazilian agencies: CAPES, FAPEMA (BPD-12643/22), and CNPq for financial support. We also thank Foundation for Science and Technology (FCT), Portugal (Strategic Projects UID/NEU/04539/2013 and UID/NEU/04539/2019) and COMPETE-FEDER (POCI-01-0145-FEDER-007440).

Funding

This research was supported by the Brazilian agencies: CAPES – Finance Code 001, CNPq, FINEP, and FAPEMA - (BPD-12643/22).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design development. JGON, JVM, OCSN, and JOC performed materials preparation, data collection, analysis, and writing—original draft. LMS, FM, and AAMM performed conceptualization and reviewing. AOS performed the original review, correction and editing, resources, and supervision.

Corresponding author

Correspondence to João Gomes de Oliveira Neto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Neto, J.G., Marques, J.V., da Silva Neto, O.C. et al. Investigation of the structural, thermal, and spectroscopic properties of L-threonine crystal containing Eu3+ ions for use in visible light-emitting devices. J Mater Sci: Mater Electron 34, 1705 (2023). https://doi.org/10.1007/s10854-023-11107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11107-0

Navigation