Skip to main content
Log in

Organic polymer artificial synapse device based on amylum memristor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Memristors with analog resistive switching could memorize and deal with information at the same time, similar to how biological synapses function by regulating the connection between two adjacent neurons. In this work, the memristor with ITO/amylum/Pt structure was prepared using amylum film as active layer. An electronic synaptic device is described. The current–voltage characteristics of the device under voltage pulse signal show typical behavior of artificial synaptic device. ITO/amylum/Pt devices have stable and reliable electrical characteristics at scanning bias. ITO/amylum/Pt memristor could well mimic the function and synaptic plasticity of biological synapses, such as amplitude-dependent plasticity, excitatory postsynaptic current, paired pulse facilitation, and learning, forgetting, and relearning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Park, J.-S. Lee, Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano 11, 8962–8969 (2017)

    Article  CAS  Google Scholar 

  2. Y. Sun, N. He, Y. Wang, Q. Yuan, D. Wen, Multilevel memory and artificial synaptic plasticity in P(VDF-TrFE)-based ferroelectric field effect transistors. Nano Energy 98, 107252 (2022)

    Article  CAS  Google Scholar 

  3. Y. Sun, Y. Wang, Q. Yuan, N. He, D. Wen, Vertical organic ferroelectric synaptic transistor for temporal information processing. Adv. Mater. Interfaces 9, 2201421 (2022)

    Article  Google Scholar 

  4. K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang, W. Jie, J. Hao, Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl. Mater. Interfaces 13, 32606 (2021)

    Article  CAS  Google Scholar 

  5. Y. Sun, N. He, D. Wen, F. Sun, The nonvolatile resistive switching memristor with Co–Ni layered double hydroxide hybrid nanosheets and its application as an artificial synapse. Appl. Surf. Sci. 564, 150452 (2021)

    Article  CAS  Google Scholar 

  6. L. Sun, G. Hwang, W. Choi, G. Han, Y. Zhang, J. Jiang, S. Zheng, K. Watanabe, T. Taniguchi, M. Zhao, R. Zhao, Y.-M. Kim, H. Yang, Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy 69, 104472 (2020)

    Article  CAS  Google Scholar 

  7. G. Zhou, Z. Wang, B. Sun, F. Zhou, L. Sun, H. Zhao, X. Hu, X. Peng, J. Yan, H. Wang, W. Wang, J. Li, B. Yan, D. Kuang, Y. Wang, L. Wang, S. Duan, Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Electron. Mater. 8, 2101127 (2022)

    Article  CAS  Google Scholar 

  8. X. Yan, G. Cao, J. Wang, M. Man, J. Zhao, Z. Zhou, H. Wang, Y. Pei, K. Wang, C. Gao, J. Lou, D. Ren, C. Lu, J. Chen, Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C 8, 4926 (2020)

    Article  CAS  Google Scholar 

  9. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80 (2008)

    Article  CAS  Google Scholar 

  10. X. Yan, L. Zhang, H. Chen, X. Li, J. Wang, Q. Liu, C. Lu, J. Chen, H. Wu, P. Zhou, Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 28, 1803728 (2018)

    Article  Google Scholar 

  11. L. Hu, W. Han, H. Wang, Resistive switching and synaptic learning performance of TiO2 thin film based device prepared by sol-gel and spin coating technique. Nanotechnology 31, 155202 (2020)

    Article  CAS  Google Scholar 

  12. Y. Sun, L. Li, K. Shi, Analog and digital bipolar resistive switching in Co–Al-layered double hydroxide memristor. Nanomaterials 10, 2095 (2020)

    Article  CAS  Google Scholar 

  13. B. Zeng, C. Liu, S. Dai, P. Zhou, K. Bao, S. Zheng, Q. Peng, J. Xiang, J. Gao, J. Zhao, M. Liao, Y. Zhou, Electric field gradient-controlled domain switching for size effect resistant multilevel operations in HfO2-based ferroelectric field-effect transistor. Adv. Funct. Mater. 31, 2011077 (2021)

    Article  CAS  Google Scholar 

  14. B. Sun, G. Zhou, L. Sun, H. Zhao, Y. Chen, F. Yang, Y. Zhao, Q. Song, ABO3 multiferroic perovskite materials for memristive memory and neuromorphic computing. Nanoscale Horiz. 6, 939 (2021)

    Article  CAS  Google Scholar 

  15. D. Wu, Q. Zhang, X. Wang, B. Zhang, Interface-confined synthesis of a nonplanar redox-active covalent organic framework film for synaptic memristors. Nanoscale 15, 2726 (2021)

    Article  Google Scholar 

  16. B. Sueoka, M.M.H. Tanim, L. Williams, Z. Xiao, Y.Z. Seah, K.Y. Cheong, F. Zhao, A synaptic memristor based on natural organic honey with neural facilitation. Org. Electron. 109, 106622 (2022)

    Article  CAS  Google Scholar 

  17. B. Sueoka, K.Y. Cheong, F. Zhao, Study of synaptic properties of honey thin film for neuromorphic systems. Mater. Lett. 308, 131169 (2022)

    Article  CAS  Google Scholar 

  18. X.C. Xing, M. Chen, Y. Gong, Z.Y. Lv, S.T. Han, Y. Zhou, Building memory devices from biocomposite electronic materials. Adv. Mater. 21, 100 (2020)

    CAS  Google Scholar 

  19. M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12, 1680 (2018)

    Article  CAS  Google Scholar 

  20. N. Raeis-Hosseini, Y. Park, J.-S. Lee, Flexible artificial synaptic devices based on collagen from fish protein with spike-timing-dependent plasticity. Adv. Funct. Mater. 28, 1800553 (2018)

    Article  Google Scholar 

  21. B. Sueoka, K.Y. Cheong, F. Zhao, Natural biomaterial honey based resistive switching device for artificial synapse in renewable neuromorphic systems and bioelectronics. Appl. Phys. Lett. 120, 083301 (2022)

    Article  CAS  Google Scholar 

  22. C. Shi, J. Wang, M.L. Sushko, Q. Wu, X. Yan, X.Y. Liu, Silk flexible electronics: from Bombyx mori silk Ag nanoclusters hybrid materials to mesoscopic memristors and synaptic emulators. Adv. Funct. Mater. 29, 1904777 (2019)

    Article  CAS  Google Scholar 

  23. J. Yong, B. Hassan, Y. Liang, K. Ganesan, R. Rajasekharan, R. Evans, G. Egan, O. Kavehei, J. Li, G. Chana, B. Nasr, E. Skafidas, A silk fibroin bio-transient solution processable memristor. Sci. Rep. 7, 14731 (2017)

    Article  Google Scholar 

  24. B.K. Murgunde, M.K. Rabinal, Solution processed bilayer junction of silk fibroin and semiconductor quantum dots as multilevel memristor devices. Org. Electron. 48, 276 (2017)

    Article  CAS  Google Scholar 

  25. T. Hussain, H. Abbas, C. Youn, H. Lee, T. Boynazarov, B. Ku, Y. Jeon, H. Han, J.H. Lee, C. Choi, T. Choi, Cellulose nanocrystal based bio-memristor as a green artificial synaptic device for neuromorphic computing applications. Adv. Mater. Technol. 7, 2100744 (2022)

    Article  CAS  Google Scholar 

  26. M.K. Rahmani, S.A. Khan, H. Kim, M.U. Khan, J. Kim, J. Bae, M.H. Kang, Demonstration of high-stable bipolar resistive switching and bio-inspired synaptic characteristics using PEDOT:PSS-based memristor devices. Org. Electron. 114, 106730 (2023)

    Article  CAS  Google Scholar 

  27. D. Skowrońska, K. Wilpiszewska, Deep eutectic solvents for starch treatment. Polymers 14, 220 (2022)

    Article  Google Scholar 

  28. N. Raeis-Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible biomemristors. ACS Appl. Mater. Interfaces 8, 7326 (2016)

    Article  CAS  Google Scholar 

  29. G. Lozano-Vazquez, J. Alvarez-Ramirez, C. Lobato-Calleros, E.J. Vernon-Carter, N. Hernández-Marín, Characterization of corn starch-calcium alginate xerogels by microscopy, thermal, XRD, and FTIR analyses. Starch-Starke 73, 1 (2021)

    Article  Google Scholar 

  30. W. Liu, Y. Li, H.D. Goff, Distribution of octenylsuccinic groups in modified waxy maize starch: an analysis at granular level. Food Hydrocoll. 84, 210–218 (2018)

    Article  CAS  Google Scholar 

  31. H. Peng, H. Xiong, S. Wang, Soluble starch–based biodegradable and microporous microspheres as potential adsorbent for stabilization and controlled release of coix seed oil. Eur. Food Res. Technol. 232, 693 (2011)

    Article  CAS  Google Scholar 

  32. A.S.J. Arnóbio, V.S. Maria, C.P. Kelly, Thermal analysis of biodegradable microparticles containing ciprofloxacin hydrochloride obtained by spray drying technique. Thermochim. Acta 467, 91–98 (2007)

    Google Scholar 

  33. Y. Sun, D. Wen, Nonvolatile WORM and rewritable multifunctional resistive switching memory devices from poly(4-vinyl phenol) and 2-amino-5-methyl-1,3,4-thiadiazole composite. J. Alloy. Compd. 806, 215 (2019)

    Article  CAS  Google Scholar 

  34. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  35. N.R. Hosseini, J.-S. Lee, Controlling the resistive switching behavior in starch-based flexible biomemristors. ACS Appl. Mater. Interfaces 8, 7326 (2016)

    Article  Google Scholar 

  36. N. He, Y. Sun, D. Wen, Synaptic behavior of Ni–Co layered double hydroxide-based memristor. Appl. Phys. Lett. 118, 173503 (2021)

    Article  CAS  Google Scholar 

  37. Y. Wang, Q.F. Liao, D.H. She, Z.Y. Lv, Y. Gong, G.L. Ding, W.B. Ye, J.R. Chen, Z.Y. Xiong, G.P. Wang, Y. Zhou, S.T. Han, Modulation of binary neuroplasticity in a heterojunction-based ambipolar transistor. ACS Appl. Mater. Interfaces 12, 15370 (2020)

    Article  CAS  Google Scholar 

  38. G. Liu, C. Wang, W.B. Zhang, L. Pan, C.C. Zhang, X. Yang, F. Fan, Y. Chen, R.W. Li, Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater. 2, 1500298 (2016)

    Article  Google Scholar 

  39. Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu, X.J. Zhu, Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO Memristor. Adv. Funct. Mater. 22, 2759 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grand number: 62065001), Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project, China (202205AC160001).

Author information

Authors and Affiliations

Authors

Contributions

EZ: Conceptualization, formal analysis, investigation, methodology, and supervision. JJ: Validation, visualization, and writing—original draft. GL: Writing—review and editing. CW: Investigation and conceptualization. CZ: Supervision. ZZ: Conceptualization and investigation.

Corresponding author

Correspondence to Guangyu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, E., Jiang, J., Liu, G. et al. Organic polymer artificial synapse device based on amylum memristor. J Mater Sci: Mater Electron 34, 1688 (2023). https://doi.org/10.1007/s10854-023-11101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11101-6

Navigation