Skip to main content
Log in

Effect of gamma-ray irradiation on structural and optical property of WSe2 film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe2) films. These WSe2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma rays of 1 kGy, 10 kGy, and 100 kGy doses were irradiated on these films. The structural characterization techniques XRD and Raman spectra show that with increase in gamma dose of WSe2 film increases the strain \(\left( \varepsilon \right)\) produced in the material. For validation of oxygen occupying the selenium vacancy in WSe2 thin film is confirmed through X-ray photoelectron spectroscopy (XPS) spectra. The optical band gap is also seen to decrease from 1.60 to 1.14 eV with the increasing gamma dose from 1 to 100 kGy, and can be attributed to the defect induced in the WSe2 sample. The I–V curve also shows a significant linear increase in current of gamma-irradiated WSe2 thin films. These changes induced in the structural, optical and electrical properties of the WSe2 thin films due to gamma irradiation have proved possible applications of these samples in optoelectronics, space, and defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

We hereby declare that the data/results are original and have not been communicated for publication elsewhere, have not been published previously, and are not under consideration for publication elsewhere. Therefore, if accepted, the data/results will not be published elsewhere.

References

  1. H. Nan, R. Zhou, X. Gu, S. Xiao, K.K. Ostrikov, Nanoscale. 11, 19202 (2019)

    Article  CAS  Google Scholar 

  2. S. Cianci, E. Blundo, M. Felici, A. Polimeni, G. Pettinari, Opt. Mater. (Amst). 125, 112087 (2022)

    Article  CAS  Google Scholar 

  3. Z. Wang, Q. Li, Y. Chen, B. Cui, Y. Li, F. Besenbacher, M. Dong, NPG Asia Mater. 10, 703 (2018)

    Article  CAS  Google Scholar 

  4. E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2, 1 (2020)

    Article  Google Scholar 

  5. K. Ye, L. Liu, C. Mu, K. Zhai, S. Guo, B. Wang, A. Nie, S. Meng, F. Wen, J. Xiang, T. Xue, M. Kang, Y. Gong, Y. Tian, Z. Liu, Nano Res. 15, 4653 (2022)

    Article  CAS  Google Scholar 

  6. J.Y. Park, Y. Qi, D.F. Ogletree, P.A. Thiel, M. Salmeron, Phys. Rev. B—Condens. Matter Mater. Phys. 76, 1 (2007)

    Google Scholar 

  7. K. Yu, K. Zou, H. Lang, Y. Peng, Friction. 9, 1492 (2021)

    Article  CAS  Google Scholar 

  8. Y. Dong, J. Phys. D: Appl. Phys. (2014). https://doi.org/10.1088/0022-3727/47/5/055305

    Article  Google Scholar 

  9. P. Yin, X. Jiang, R. Huang, X. Wang, Y. Ge, C. Ma, H. Zhang, Adv. Mater. Interfaces. 8, 1 (2021)

    Google Scholar 

  10. A. Falin, M. Holwill, H. Lv, W. Gan, J. Cheng, R. Zhang, D. Qian, M.R. Barnett, E.J.G. Santos, K.S. Novoselov, T. Tao, X. Wu, L.H. Li, ACS Nano. 15, 2600 (2021)

    Article  CAS  Google Scholar 

  11. J. Xia, H. Gu, C. Liang, Y. Cai, G. Xing, J. Phys. Chem. Lett. 13, 4579 (2022)

    Article  CAS  Google Scholar 

  12. C.S. Pang, T.Y.T. Hung, A. Khosravi, R. Addou, Q. Wang, M.J. Kim, R.M. Wallace, Z. Chen, Adv. Electron. Mater. 6, 2 (2020)

    Article  Google Scholar 

  13. S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, A. Javey, Nano Lett. 14, 4592 (2014)

    Article  CAS  Google Scholar 

  14. S. Yin, Q. Luo, D. Wei, G. Guo, X. Sun, Y. Li, Y. Tang, Z. Feng, X. Dai, Phys. E Low-Dimens. Syst. Nanostruct. 142, 1 (2022)

    Article  Google Scholar 

  15. H. Liang, Y. Zheng, L. Loh, Z. Hu, Q. Liang, C. Han, M. Bosman, W. Chen, A. A. Bettiol, Nano Res. 16, 1220–1227 (2023)

  16. X. Yue, J. Yang, W. Li, Y. Jing, L. Dong, Y. Zhang, X. Li, ACS Sustain. Chem. Eng. 10, 2420 (2022)

    Article  CAS  Google Scholar 

  17. L. Wang, D. Wang, Y. Luo, C.Y. Xu, L. Cui, X.B. Li, H.B. Sun, Phys. Chem. Chem. Phys. 25, 2043 (2022)

    Article  Google Scholar 

  18. X. Wu, X. Zheng, G. Zhang, X. Chen, H. Dong, RSC Adv. 11, 22088 (2021)

    Article  CAS  Google Scholar 

  19. H.Y. He, J. Sol–Gel Sci. Technol. 93, 554 (2020)

    Article  CAS  Google Scholar 

  20. P.T. Kolhe, A.B. Thorat, A.B. Phatangare, P.R. Jadhav, S.N. Dalvi, S.D. Dhole, S.S. Dahiwale, J. Alloys Compd. 896, 162969 (2022)

    Article  CAS  Google Scholar 

  21. J.E. Parks, "The Compton effect-Compton scattering and gamma ray spectroscopy." Department of Physics and Astronomy, The University of Tennessee Knoxville, Tennessee, 37996-1200 (2015)

  22. P. Rana, R.P. Chauhan, Phys. B Condens. Matter. 451, 26 (2014)

    Article  CAS  Google Scholar 

  23. K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Radiat. Phys. Chem. 91, 35 (2013)

    Article  CAS  Google Scholar 

  24. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, F.M. Peeters, Phys. Rev. B—Condens. Matter Mater. Phys. 87, 1 (2013)

    Google Scholar 

  25. W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Nanoscale. 5, 9677 (2013)

    Article  CAS  Google Scholar 

  26. X. Wu, X. Zheng, G. Zhang, X. Chen, J. Ding, Nanotechnology (2021). https://doi.org/10.1088/1361-6528/abf879

    Article  Google Scholar 

  27. X. Zhang, L. Gao, H. Yu, Q. Liao, Z. Kang, Z. Zhang, Y. Zhang, Z. Wu, Z. Ni, Nanophotonics. 6, 655 (2017)

    Article  Google Scholar 

  28. X. Zhang, L. Gao, H. Yu, Q. Liao, Z. Kang, Z. Zhang, Y. Zhang, Acc. Mater Res. 2, 655 (2021)

    Article  CAS  Google Scholar 

  29. S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Phys. Rev. B—Condens. Matter Mater. Phys. (2015). https://doi.org/10.1103/PhysRevB.91.195411

    Article  Google Scholar 

  30. Q. Qian, L. Peng, N. Perea-Lopez, K. Fujisawa, K. Zhang, X. Zhang, T.H. Choudhury, J.M. Redwing, M. Terrones, X. Ma, S. Huang, Nanoscale. 12, 2047 (2020)

    Article  CAS  Google Scholar 

  31. S. Parmar, A. Biswas, S. Kumar Singh, B. Ray, S. Parmar, S. Gosavi, V. Sathe, R. Janay Choudhary, S. Datar, S. Ogale, Phys. Rev. Mater. 3, 1 (2019)

    Google Scholar 

  32. X. Li, J. Li, K. Wang, X. Wang, S. Wang, X. Chu, M. Xu, X. Fang, Z. Wei, Y. Zhai, B. Zou, Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4968534

    Article  Google Scholar 

  33. K.G. Zhou, F. Withers, Y. Cao, S. Hu, G. Yu, C. Casiraghi, ACS Nano. 8, 9914 (2014)

    Article  CAS  Google Scholar 

  34. A.M. Dadgar, D. Scullion, K. Kang, D. Esposito, E.H. Yang, I.P. Herman, M.A. Pimenta, E.J.G. Santos, A.N. Pasupathy, Chem. Mater. 30, 5148 (2018)

    Article  CAS  Google Scholar 

  35. B. Amin, T.P. Kaloni, U. Schwingenschlögl, RSC Adv. 4, 34561 (2014)

    Article  CAS  Google Scholar 

  36. H. Cho, M. Sritharan, Y. Ju, P. Pujar, R. Dutta, W.S. Jang, Y.M. Kim, S. Hong, Y. Yoon, S. Kim, ACS Nano (2022). https://doi.org/10.1021/acsnano.2c11567

    Article  Google Scholar 

  37. A. Azcatl, Q. Wang, M.J. Kim, R.M. Wallace, APL Mater. (2017). https://doi.org/10.1063/1.4992120

    Article  Google Scholar 

  38. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  39. A.S. Farid, and M. M. El-Nahass, Opt. Laser Technol. 156, 108598 (2022)

  40. J. Tauc (ed.) Amorphous and liquid semiconductors. Springer Science & Business Media (2012)

  41. S.L. Sharma, T.K. Maity, Bull. Mater. Sci. 34, 61 (2011)

    Article  CAS  Google Scholar 

  42. S.M. Ali, M.S. AlGarawi, W.A. Farooq, M. Atif, A. Hanif, M.A. AlMutairi, M.A. Shar, Mater. Chem. Phys. 240, 122243 (2020)

    Article  CAS  Google Scholar 

  43. Y.A. Zaykin, B.A. Aliyev, Radiat. Phys. Chem. 63, 227 (2002)

    Article  CAS  Google Scholar 

  44. T.D. Ngo, M.S. Choi, M. Lee, F. Ali, Y. Hassan, N. Ali, S. Liu, C. Lee, J. Hone, W.J. Yoo, Adv. Sci. (2022). https://doi.org/10.1002/advs.202202465

    Article  Google Scholar 

Download references

Acknowledgements

P. T. Kolhe is grateful to Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Pune for the award of CSMNRF-2020 Fellowship. Y.V. Hase is thankful to the Ministry of New and Renewable Energy (MNRE), Government of India, for the financial support under the National Renewable Energy Fellowship (NREF) program. P. R. Jadhav is grateful to Mahatma Jyotiba Phule Research & Training Institute (MAHAJYOTI), Nagpur for the financial assistance through the fellowship MAHAJYOTI-2021. Authors are thankful to various funding agencies for providing the financial support to purchase the following characterization techniques: SEM/UV–Visible (DST-FIST-SR/FST/PS II-003/2000), Raman Spectroscopy (UPE Phase II 1-11-2012(NS/PE)), XRD (UGC-CNQS-1-11/2001(NS/PE)), XPS (SR/FST/PSII-034/2015 (G)).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PTK: conceptualization, methodology, data curation, software, writing—original draft SND: resources, formal analysis YVH: methodology PRJ: resources VSG: resources. SRJ: resources SDD: resources, investigation SSD: writing—review and editing, supervision, validation.

Corresponding author

Correspondence to S. S. Dahiwale.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolhe, P.T., Dalvi, S.N., Hase, Y.V. et al. Effect of gamma-ray irradiation on structural and optical property of WSe2 film. J Mater Sci: Mater Electron 34, 1704 (2023). https://doi.org/10.1007/s10854-023-11088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11088-0

Navigation