Skip to main content

Advertisement

Log in

Multifunctional flexible perovskites with carbon nanotube/PC71BM stack for effective charge extraction and slow recombination phenomena

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Definitely not a hyperbole that perovskites have been distinguished in championing revolution of energy harvesting. The development of extremely effective perovskite devices is the focus of extensive and rigorous research efforts. The photo-physics mechanism, device architectures, processing methods, and characterizations could all be considered subcategories of these efforts. On either side of the perovskite absorbers, appropriate charge transport layers are critical for optimizing the overall device efficiency. They also facilitate discrepancies between the charge extraction and recombination phenomena. Despite their prominence, research on the charge transfer kinetic mechanisms and underlying dynamics has lagged. To precisely follow the kinetics of an extensive process by holding distinct and energetically confined spectrum properties, we have here addressed the fundamental challenges using a thin charge extraction layer made of semiconducting single walled carbon nanotubes (SWCNT). Here, the hole transport component is fullerene. By filling in pinholes and vacancies between perovskite grains, PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) specifically plays a key role in enhancing the characteristics of the light-absorbing layer and developing a film with large grains and reduced grain boundaries. This design demonstrated increased electrical parameters with better efficiency of about 13.41%. The CNT/PCBM regions had the maximum open circuit voltage VOC, which was around 0.71 V, with short circuit current density JSC values of 16.60 mAcm−2 and fill factor of 64.03% along with better stability. Further, the frequency responses of the harvesting system with perovskite materials under harmonic excitation are derived and presented to analyze the mechanical behavior and piezo behavior proving the perovskites to be multifunctional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The datasets generated during and/ or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  2. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, J. Seo, Efficient perovskite solar cells via improved carrier management. Nature. 590(7847), 587–593 (2021)

    Article  CAS  Google Scholar 

  3. Y. Zhao, K. Zhu, Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45(3), 655–689 (2016)

    Article  CAS  Google Scholar 

  4. Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, S. Yang, Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J. Am. Chem. Soc. 136(10), 3760–3763 (2014)

    Article  CAS  Google Scholar 

  5. K. Wojciechowski, S.D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, H.J. Snaith, Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8(12), 12701–12709 (2014)

    Article  CAS  Google Scholar 

  6. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 342(6156), 344–347 (2013)

    Article  CAS  Google Scholar 

  7. D. Bartesaghi, I.D.C. Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L. Koster, Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6(1), 1–10 (2015)

    Article  Google Scholar 

  8. K. Wang, C. Liu, P. Du, J. Zheng, X. Gong, Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 8(4), 1245–1255 (2015)

    Article  CAS  Google Scholar 

  9. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science. 345(6196), 542–546 (2014)

    Article  CAS  Google Scholar 

  10. C. Tian, K. Lin, J. Lu, W. Feng, P. Song, L. Xie, Z. Wei, Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability. Small Methods 4(5), 1900476 (2020)

    Article  CAS  Google Scholar 

  11. H. Kim, K.G. Lim, T.W. Lee, Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9(1), 12–30 (2016)

    Article  CAS  Google Scholar 

  12. Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao, Z. Chu, J. You, Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31(49), 1905143 (2019)

    Article  CAS  Google Scholar 

  13. L.L. Jiang, S. Cong, Y.H. Lou, Q.H. Yi, J.T. Zhu, H. Ma, G.F. Zou, Interface engineering toward enhanced efficiency of planar perovskite solar cells. J. Mater. Chem. A 4(1), 217–222 (2016)

    Article  CAS  Google Scholar 

  14. K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R.A. Weiss, X. Gong, Efficient perovskite hybrid solar cells via ionomer interfacial engineering. Adv. Funct. Mater. 25(44), 6875–6884 (2015)

    Article  CAS  Google Scholar 

  15. P. Hang, J. Xie, C. Kan, B. Li, Y. Zhang, P. Gao, X. Yu, Stabilizing fullerene for burn-in‐free and stable perovskite solar cells under ultraviolet preconditioning and light soaking. Adv. Mater. 33(10), 2006910 (2021)

    Article  CAS  Google Scholar 

  16. H. Bi, X. Zuo, B. Liu, D. He, L. Bai, W. Wang, J. Chen, Multifunctional organic ammonium salt-modified SnO2 nanoparticles toward efficient and stable planar perovskite solar cells. J. Mater. Chem. A 9(7), 3940–3951 (2021)

    Article  CAS  Google Scholar 

  17. J. Chen, H. Dong, L. Zhang, J. Li, F. Jia, B. Jiao, Z. Wu, Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%. J. Mater. Chem. A 8(5), 2644–2653 (2020)

    Article  CAS  Google Scholar 

  18. E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale, A. Proppe, E.H. Sargent, Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020)

    Article  CAS  Google Scholar 

  19. P. Wang, B. Chen, R. Li, S. Wang, N. Ren, Y. Li, X. Zhang, Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V. ACS Energy Lett. 6(6), 2121–2128 (2021)

    Article  CAS  Google Scholar 

  20. J. Wei, F. Guo, X. Wang, K. Xu, M. Lei, Y. Liang, D. Xu, SnO2-in‐polymer matrix for high‐efficiency perovskite solar cells with improved reproducibility and stability. Adv. Mater. 30(52), 1805153 (2018)

    Article  Google Scholar 

  21. Y.W. Noh, J.H. Lee, I.S. Jin, S.H. Park, J.W. Jung, Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis. Nano Energy 65, 104014 (2019)

    Article  CAS  Google Scholar 

  22. S. He, L. Qiu, D.Y. Son, Z. Liu, E.J. Juarez-Perez, L.K. Ono, Y. Qi, Carbon-based electrode engineering boosts the efficiency of all low-temperature-processed perovskite solar cells. ACS Energy Lett. 4(9), 2032–2039 (2019)

    Article  CAS  Google Scholar 

  23. A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, Van De R. Krol, T. Moehl, J.E. Moser, Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics. 8(3), 250–255 (2014)

    Article  CAS  Google Scholar 

  24. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E.M. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4(9), 1532–1536 (2013)

    Article  CAS  Google Scholar 

  25. C.S. Jr Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, V. Sundström, Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136(14), 5189–5192 (2014)

    Article  CAS  Google Scholar 

  26. M.T. Trinh, X. Wu, D. Niesner, X.Y. Zhu, Many-body interactions in photo-excited lead iodide perovskite. J. Mater. Chem. A 3(17), 9285–9290 (2015)

    Article  CAS  Google Scholar 

  27. A.M. Dowgiallo, K.S. Mistry, J.C. Johnson, J.L. Blackburn, Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60. ACS nano. 8(8), 8573–8581 (2014)

    Article  CAS  Google Scholar 

  28. P. Zhu, S. Gu, X. Luo, Y. Gao, S. Li, J. Zhu, H. Tan, Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2‐KCl composite electron transport layer. Adv. Energy Mater. 10(3), 1903083 (2020)

    Article  CAS  Google Scholar 

  29. S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang, Y. Rong, X. Li, Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020)

    Article  CAS  Google Scholar 

  30. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14(10), 5561–5568 (2014)

    Article  CAS  Google Scholar 

  31. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 5(23), 4207–4212 (2014)

    Article  CAS  Google Scholar 

  32. Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao, K. Fu, S.G. Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014)

    Article  CAS  Google Scholar 

  33. P. Schulz, A.M. Dowgiallo, M. Yang, K. Zhu, J.L. Blackburn, J.J. Berry, Charge transfer dynamics between carbon nanotubes and hybrid organic metal halide perovskite films. J. Phys. Chem. Lett. 7(3), 418–425 (2016)

    Article  CAS  Google Scholar 

  34. C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A 2(38), 15897–15903 (2014)

    Article  CAS  Google Scholar 

  35. S. Paek, N. Cho, H. Choi, H. Jeong, J.S. Lim, J.Y. Hwang, J. Ko, Improved external quantum efficiency from solution-processed (CH3NH3)PbI3 Perovskite/PC71BM planar heterojunction for high efficiency hybrid solar cells. J. Phys. Chem. C 118(45), 25899–25905 (2014)

    Article  CAS  Google Scholar 

  36. C.W. Jang, H. Kim, M.K. Nazeeruddin, D.H. Shin, S.H. Choi, Piezo-electric and-phototronic effects of perovskite 2D| 3D heterostructures. Nano Energy. 84, 105899 (2021)

    Article  CAS  Google Scholar 

  37. M. Coll, A. Gomez, E. Mas-Marza, O. Almora, G. Garcia-Belmonte, M. Campoy-Quiles, J. Bisquert, Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6(8), 1408–1413 (2015)

    Article  CAS  Google Scholar 

  38. R. Ding, X. Zhang, X.W. Sun, Organometal trihalide perovskites with intriguing ferroelectric and piezoelectric properties. Adv. Funct. Mater. 27(43), 1702207 (2017)

    Article  Google Scholar 

  39. H.S. Wu, B.T. Murti, J. Singh, P.K. Yang, M.L. Tsai, Prospects of metal-free perovskites for piezoelectric applications. Adv. Sci. 9, 2104703 (2022)

    Article  CAS  Google Scholar 

  40. P. Saxena, N.E. Gorji, COMSOL simulation of heat distribution in perovskite solar cells: coupled optical–electrical–thermal 3-D analysis. IEEE J. Photovolt. 9(6), 1693–1698 (2019)

    Article  Google Scholar 

  41. M.G. Deceglie, V.E. Ferry, A.P. Alivisatos, H.A. Atwater, Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett. 12(6), 2894–2900 (2012)

    Article  CAS  Google Scholar 

  42. N. Li, A. Feng, X. Guo, J. Wu, S. Xie, Q. Lin, X. Tao, Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response. Adv. Energy Mater. 12(7), 2103241 (2022)

    Article  CAS  Google Scholar 

  43. W. Qiu, Y. Wu, Y. Wang, Z. Yang, R. Yang, C. Zhang, Y. Hao, Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%. Chem. Eng. J. 468, 143656 (2023)

    Article  CAS  Google Scholar 

  44. F. Pino, I. Zarazúa, A. Alatorre-Ordaz, G. Martínez-Rodríguez, J.L. Cabellos, T. López-Luke, Experimental parameters effect on the ITO/PEDOT: PSS/MAPbI3/PCBM/Ag inverted organic perovskite photovoltaic solar cell efficiency. J. Electron. Mater. 52, 1–9 (2023)

    Article  Google Scholar 

  45. Z. Li, P.P. Boix, G. Xing, K. Fu, S.A. Kulkarni, S.K. Batabyal, L.H. Wong, Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale. 8(12), 6352–6360 (2016)

    Article  CAS  Google Scholar 

  46. M.K. Mohammed, G. Sarusi, P. Sakthivel, G. Ravi, U. Younis, Improved stability of ambient air-processed methylammonium lead iodide using carbon nanotubes for perovskite solar cells. Mater. Res. Bull. 137, 111182 (2021)

    Article  CAS  Google Scholar 

  47. R. Hu, L. Chu, J. Zhang, X.A. Li, W. Huang, Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. J. Power Sources. 361, 259–275 (2017)

    Article  CAS  Google Scholar 

  48. Y. Chen, X. Zuo, Y. He, F. Qian, S. Zuo, Y. Zhang, S. Liu, Dual passivation of perovskite and SnO2 for high-efficiency MAPbI3 perovskite solar cells. Adv. Sci. 8(5), 2001466 (2021)

    Article  CAS  Google Scholar 

  49. Z. Chen, B. Turedi, A.Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, O.M. Bakr, Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4(6), 1258–1259 (2019)

    Article  CAS  Google Scholar 

  50. Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, B. Sun, Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale. 6(18), 10505–10510 (2014)

    Article  CAS  Google Scholar 

  51. J. Lee, M.M. Menamparambath, J.Y. Hwang, S. Baik, Hierarchically structured hole transport layers of spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. ChemSusChem. 8(14), 2358–2362 (2015)

    Article  CAS  Google Scholar 

  52. Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, H. Lin, Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3(31), 15996–16004 (2015)

    Article  CAS  Google Scholar 

  53. L. Reshma, B. Ramaraj, P.K. Shin, K. Santhakumar, Spray-coated high-efficiency small molecule solar cell based on DTS [PTTH 2] 2:PC 71 BM configurations through integrated molecular and solvent engineering. J. Mater. Sci. 32, 5965–5977 (2021)

    CAS  Google Scholar 

  54. R. Liyakath, B. Ramaraj, P.K. Shin, K. Santhakumar, Restructuring and interlayer phenomenon on tandem architecture to improve organic solar cell behaviour. J. Mater. Sci. 32, 7729–7738 (2021)

    CAS  Google Scholar 

  55. M. Rajarathinam, S.F. Ali, Energy generation in a hybrid harvester under harmonic excitation. Energy Conv. Manag. 155, 10–19 (2018)

    Article  Google Scholar 

  56. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A.W. Lees, G. Litak, Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  57. M. Aravindan, S.F. Ali, Exploring 1:3 internal resonance for broadband piezoelectric energy harvesting. Mech. Syst. Signal Process. 153, 107493 (2021)

    Article  Google Scholar 

Download references

Funding

This study was supported by Indian Institute of Technology Madras under Institute Post Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RL: Conceptualization, Data collection, Data curation, Investigations, Writing-original draft, Formal analysis. SFA: Supervision, Validation, Visualization. The authors have fully read and approved the final version of the manuscript.

Corresponding author

Correspondence to Reshma Liyakath.

Ethics declarations

Competing interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liyakath, R., Ali, S.F. Multifunctional flexible perovskites with carbon nanotube/PC71BM stack for effective charge extraction and slow recombination phenomena. J Mater Sci: Mater Electron 34, 1720 (2023). https://doi.org/10.1007/s10854-023-11086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11086-2

Navigation