Skip to main content

Advertisement

Log in

Solvent modulation, microstructure evaluation, process optimization, and nanoindentation analysis of micro-Cu@Ag core–shell sintering paste for power electronics packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of electronic technology towards high power, miniaturization, and system integration, power electronic packaging is facing increasing challenges, especially for die attachment. This research aims to explore silver-coated copper (Cu@Ag) paste with sufficient mechanical properties and high-temperature reliability, as an alternative solution for silver sintering with lower cost. Firstly, micro-Cu@Ag sintering pastes were investigated under four kinds of polyol-based solvent systems and two types of particle morphologies, which included sphere-type (SCu@Ag) and flake-type (FCu@Ag). Sintering performance and microstructural evolution were compared and analyzed. Notably, sintered joints employing the terpineol–polyethylene glycol solvent system and flake-type morphology displayed a denser microstructure in comparison to SCu@Ag joints. Its bonding strength reached 36.15 MPa, which was approximately 20% higher than SCu@Ag joints. Subsequently, the influence of key sintering process parameters on Cu@Ag joints was analyzed, including sintering temperature, pressure and time. Additionally, high-temperature aging and thermal cycling tests were conducted on the optimized Cu@Ag joints to assess their reliability. Finally, the micromechanical properties of Cu@Ag joints before and after high-temperature aging were further evaluated by nanoindentation including creep properties. The elastoplastic constitutive models of Cu@Ag sintered materials with different particle morphologies were constructed, providing valuable insights for reliability evaluation. The results indicated that FCu@Ag joints exhibited satisfactory creep resistance and high-temperature reliability. In conclusion, the FCu@Ag micro-paste based on the terpineol–polyethylene glycol solvent system proposed in this study demonstrated sufficient bonding strength, high reliability, and adequate mechanical properties as an attractive solution for high-temperature power electronics packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. A. Roshanghias, P. Malago, J. Kaczynski et al., Energies (2021). https://doi.org/10.3390/en14082176

    Article  Google Scholar 

  2. V.R. Manikam, C. Kuan Yew, IEEE Trans. Compon. Packag. Manuf. Technol. (2011). https://doi.org/10.1109/tcpmt.2010.2100432

    Article  Google Scholar 

  3. S. Zhang, X. Xu, T. Lin, P. He, J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01790-3

    Article  Google Scholar 

  4. N. Jiang, L. Zhang, Z.Q. Liu et al., Sci. Technol. Adv. Mater. (2019). https://doi.org/10.1080/14686996.2019.1640072

    Article  Google Scholar 

  5. M. Xiong, L. Zhang, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2907-y

    Article  Google Scholar 

  6. Z. Zhang, C. Chen, Y. Yang et al., J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.11.251

    Article  Google Scholar 

  7. S.K. Bhogaraju, O. Mokhtari, F. Conti, G. Elger, Scr. Mater. (2020). https://doi.org/10.1016/j.scriptamat.2020.02.045

    Article  Google Scholar 

  8. P. Zhao, X. Li, Y. Mei, G.-Q. Lu, Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2021.131603

    Article  Google Scholar 

  9. K.S. Siow, J. Electron. Mater. (2014). https://doi.org/10.1007/s11664-013-2967-3

    Article  Google Scholar 

  10. J. Liu, H. Chen, H. Ji, M. Li, ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b10280

    Article  Google Scholar 

  11. Y. Peng, Y. Mou, J. Liu, M. Chen, J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03380-0

    Article  Google Scholar 

  12. H. Fang, C. Wang, S. Zhou et al., J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03207-y

    Article  Google Scholar 

  13. L.D. Carro, A.A. Zinn, P. Ruch, F. Bouville, A.R. Studart, T. Brunschwiler, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07452-8

    Article  Google Scholar 

  14. Y. Mou, J. Liu, H. Cheng, Y. Peng, M. Chen, JOM (2019). https://doi.org/10.1007/s11837-019-03517-5

    Article  Google Scholar 

  15. C.H. Lee, E.B. Choi, J.-H. Lee, Scr. Mater. (2018). https://doi.org/10.1016/j.scriptamat.2018.02.029

    Article  Google Scholar 

  16. E.B. Choi, J.-H. Lee, Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.149156

    Article  Google Scholar 

  17. Y. Tian, Z. Jiang, C. Wang et al., RSC Adv. (2016). https://doi.org/10.1039/c6ra16474a

    Article  Google Scholar 

  18. T. Michaud, T. Baffie, S.S. Nobre, J.-M. Missiaen, D. Bouvard, J.-P. Simonato, Materialia (2020). https://doi.org/10.1016/j.mtla.2020.100871

    Article  Google Scholar 

  19. C.-H. Hsiao, W.-T. Kung, J.-M. Song, J.-Y. Chang, T.-C. Chang, Mater. Sci. Eng. (2017). https://doi.org/10.1016/j.msea.2016.12.084

    Article  Google Scholar 

  20. Y. Bao, A. Wu, H. Shao, Y. Zhao, L. Liu, G. Zou, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2809-z

    Article  Google Scholar 

  21. H. Zhang, W. Wang, H. Bai et al., J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.067

    Article  Google Scholar 

  22. X. Long, Y. Guo, Y. Su, K.S. Siow, C. Chen, J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-021-07474-1

    Article  Google Scholar 

  23. X. Long, Q.P. Jia, Z. Li, S.X. Wen, Int. J. Solids Struct. (2020). https://doi.org/10.1016/j.ijsolstr.2020.01.014

    Article  Google Scholar 

  24. G. He, W. Hongcheng, Y. Yao, J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-021-06426-8

    Article  Google Scholar 

  25. X. Long, Q. Jia, Z. Shen, M. Liu, C. Guan, Mech. Mater. (2021). https://doi.org/10.1016/j.mechmat.2021.103881

    Article  Google Scholar 

  26. H. Zhang, Y. Liu, L. Wang, F. Sun, X. Fan, G. Zhang, Results Phys. (2019). https://doi.org/10.1016/j.rinp.2018.12.026

    Article  Google Scholar 

  27. J. Fan, D. Jiang, H. Zhang et al., Results Phys. (2022). https://doi.org/10.1016/j.rinp.2021.105168

    Article  Google Scholar 

  28. W.C. Oliver, G.M. Pharr, J. Mater. Res. Technol. (1992). https://doi.org/10.1557/jmr.1992.1564

    Article  Google Scholar 

  29. K. Tunvisut, N.P. O’Dowd, E.P. Busso, Int. J. Solids Struct. (2001). https://doi.org/10.1016/S0020-7683(00)00017-2

    Article  Google Scholar 

  30. J. Luo, J. Lin, Int. J. Solids Struct. (2007). https://doi.org/10.1016/j.ijsolstr.2007.01.029

    Article  Google Scholar 

Download references

Acknowledgements

In this work, the authors would like to thank to Heraeus Materials Technology Shanghai Ltd. for characterization support.

Funding

Funding was provided by Heraeus Materials Technology Shanghai Ltd.

Author information

Authors and Affiliations

Authors

Contributions

HC conducted the experiment, analyzed the data and wrote the manuscript. XW performed the experiment and analyzed some experimental data. ZZ designed the experiment and collected the data. GZ and JZ provided the experimental equipment and analytical techniques. PL supervised the research.

Corresponding author

Correspondence to Pan Liu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

This study does not include any experiments involving humans or animals. Ethical approval does not apply to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wang, X., Zeng, Z. et al. Solvent modulation, microstructure evaluation, process optimization, and nanoindentation analysis of micro-Cu@Ag core–shell sintering paste for power electronics packaging. J Mater Sci: Mater Electron 34, 1692 (2023). https://doi.org/10.1007/s10854-023-11083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11083-5

Navigation