Skip to main content
Log in

Effect of rare earth substitution on pyroelectric, ferroelectric, and piezoelectric properties lead-free Ba0.85Ca0.12RE0.03Ti0.90Zr0.04Nb0.042O3 (RE = Ce or Pr) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present research study analyzes the consequences of the incorporation of rare earth ions on the pyroelectric, ferroelectric and piezoelectric, and luminescence properties of Ba0.85Ca0.12RE0.03Ti0.90Zr0.04Nb0.042O3 (BCRETZN) (where RE = Ce or Pr) ceramic composites synthesized by means of a solid-state process. Rietveld refinement of X-ray diffraction data and Raman spectra analysis confirmed the presence of tetragonal symmetry (P4mm) at room temperature. Two different exciting laser wavelengths have been employed to illuminate the RE3+ emission phenomenon. The involvement of the luminescence behavior in the “abnormal” Raman spectra was registered at 785 nm. The measurements as a function of the temperature of pyroelectric properties, ferroelectric cycles, strain-field cycles, and dielectric properties confirmed the occurrence the tetragonal-to-cubic (T–C) and orthorhombic-to-tetragonal (O–T) phase transition sequence. Compared to pure BaTiO3, the incorporation of RE-ions lowers the phase transition temperatures. The BCPrTZN compound leads to a larger decrease in O–T and T–C phase transition temperatures than the BCCeTZN compound. The presence of Ce3+ and Pr3+ ions inside these perovskite ceramics is likely to have significant technological applications in future multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005). https://doi.org/10.1063/1.2123387

    Article  CAS  Google Scholar 

  2. P. Kantha, K. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Curr. Appl. Phys. 9, 460–466 (2009). https://doi.org/10.1016/j.cap.2008.04.004

    Article  Google Scholar 

  3. I. Nomel, J. Lelievre, L. Boyer, O.D. Panteix, P. Marchet, Ceram. Int. 48, 14697–14707 (2022). https://doi.org/10.1016/j.ceramint.2022.02.005

    Article  CAS  Google Scholar 

  4. Z. Raddaoui, R. Brahem, A. Bajahzar, H.M. Albetran, J. Dhahri, H. Belmabrouk, J. Mater. Sci.: Mater. Electron. 32, 23333–23348 (2021). https://doi.org/10.1007/s10854-021-06818-1

    Article  CAS  Google Scholar 

  5. Z. Raddaoui, R. Lahouli, S. El Kossi, J. Dhahri, H. Belmabrouk, A. Bajahzar, J. Mater. Sci.: Mater. Electron. 31, 4836–4849 (2020). https://doi.org/10.1007/s10854-020-03046-x

    Article  CAS  Google Scholar 

  6. Z. Raddaoui, S. El Kossi, A.V. Trukhanov, A.L. Kozlovskiy, M.V. Zdorovets, J. Dhahri, J. Mater. Sci.: Mater. Electron. 32, 7366–7376 (2021). https://doi.org/10.1007/s10854-021-05446-z

    Article  CAS  Google Scholar 

  7. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270–1271 (2006). https://doi.org/10.1126/science.1123811

    Article  CAS  Google Scholar 

  8. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  CAS  Google Scholar 

  9. G. Dai, S. Wang, G. Huang, G. Chen, B. Lu, D. Li, T. Tao, Y. Yao, B. Liang, S. Lu, Int. J. Appl. Ceram. Technol. 17, 1354–1361 (2020)

    Article  CAS  Google Scholar 

  10. J. Buscaglia, C. Randall, J. Eur. Ceram. Soc. 40, 3744–3758 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.021

    Article  CAS  Google Scholar 

  11. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, RSC Adv. 9, 2412 (2019). https://doi.org/10.1039/c8ra08910h

    Article  CAS  Google Scholar 

  12. H. Abdmouleha, I. Kriaaa, N. Abdelmoulaa, Z. Sassib, H. Khemakhema, J. Alloys Compd 878, 160355 (2021). https://doi.org/10.1016/j.jallcom.2021.160355

    Article  CAS  Google Scholar 

  13. G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)

    Article  Google Scholar 

  14. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, J. Am. Ceram. Soc. 93, 2942–2944 (2010). https://doi.org/10.1111/j.1551-2916.2010.03907.x

    Article  CAS  Google Scholar 

  15. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Mater. Lett. 64, 2325–2327 (2010). https://doi.org/10.1016/j.matlet.2010.07.042

    Article  CAS  Google Scholar 

  16. Y. Zhang, J. Glaum, C. Groh, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, J. Am. Ceram. Soc. 97, 2885–2891 (2014). https://doi.org/10.1111/jace.13047

    Article  CAS  Google Scholar 

  17. Z. Wang, W. Li, R. Chu, J. Hao, Z. Xu, G. Li, J. Mater. Sci.: Mater. Electron. 17, 7569 (2017). https://doi.org/10.1007/s10854-017-7569-z

    Article  CAS  Google Scholar 

  18. R. Hayati, M.A. Bahrevar, Y. Ganjkhanlou, V. Rojas, J. Koryza, J. Adv. Ceram. 8, 186–195 (2019). https://doi.org/10.1007/s40145-018-0304-2

    Article  CAS  Google Scholar 

  19. I. Zouari, Z. Sassi, L. Seveyrat, N. Abdelmoula, L. Lebrun, H. Khemakhem, Ceram. Int. 44, 8018–8025 (2018). https://doi.org/10.1016/j.ceramint.2018.01.242

    Article  CAS  Google Scholar 

  20. M. Bourguiba, Z. Raddaoui, W. Dimassi, M. Chafra, J. Dhahri, P. Marchet, M.A. Garcia, RSC Adv. 12, 10598 (2022). https://doi.org/10.1039/d2ra01068b

    Article  CAS  Google Scholar 

  21. Z. Raddaoui, R. Lahouli, S.E.L. Kossi, J. Dhahri, K. Khirouni, K. Taibi, J. Alloys Compd. 771, 67–78 (2019). https://doi.org/10.1016/j.jallcom.2018.08.242

    Article  CAS  Google Scholar 

  22. Y. El Hassan, A. Bendahhou, K. Chourti, F. Chaou, I. Jalafi, S. El Barkany, Z. Bahari, M.A. Salama, RSC Adv. 12, 33124 (2022). https://doi.org/10.1039/d2ra06758g

    Article  CAS  Google Scholar 

  23. X.S. Patel, P. Sharma, R. Vaish, Phase Transit. 89, 1062–1073 (2016). https://doi.org/10.1080/01411594.2016.1144752

    Article  CAS  Google Scholar 

  24. H. Kaddoussi, A. Lahmar, Y. Gagou, J.-L. Dellis, H. Khemakhem, M. El Marssi, Ceram. Int. 41, 15103–15110 (2015). https://doi.org/10.1016/j.ceramint.2015.08.080

    Article  CAS  Google Scholar 

  25. I. Zouari, Z. Sassi, L. Seveyrat, N. Abdelmoula, L. Lebrun, H. Khemakhem, J. Alloys Compd. 825, 153859 (2020). https://doi.org/10.1016/j.jallcom.2020.153859

    Article  CAS  Google Scholar 

  26. A.P.A. Moraes, A.G. Souza Filho, P.T.C. Freire, J. Mendes Filho, J.C. M’Peko, A.C. Hernandes, E. Antonelli, M.W. Blair, R.E. Muenchausen, L.G. Jacobsohn, W. Paraguassu, J. Appl. Phys. 109, 124102 (2011). https://doi.org/10.1063/1.3594710

    Article  CAS  Google Scholar 

  27. Z. Raddaoui, S. El Kossi, B. Smiri, T. Al-shahrani, J. Dhahri, H. Belmabrouk, RSC Adv. 10, 23615 (2020). https://doi.org/10.1039/d0ra04033a

    Article  CAS  Google Scholar 

  28. Z. Raddaoui, N. Kokanyan, M.D. Fontana, S.E. Kossi, J. Dhahri, J. Mol. Struct. 1230, 129939 (2021). https://doi.org/10.1016/j.molstruc.2021.129939

    Article  CAS  Google Scholar 

  29. I. BejaouiOuni, D. Chapron, H. Aroui, M.D. Fontana, J. Appl. Phys. 121, 114102 (2017). https://doi.org/10.1063/1.4978507

    Article  CAS  Google Scholar 

  30. F. Lawar, J. Belhadi, B. Asbani, B. Manoun, H. Kaddoussi, M. Courty, C. Boudaya, M. El Marssi, H. Khemakhem, A. Lahmar, J. Mater. Sci. Mater. Electron. 29, 18640–18649 (2018). https://doi.org/10.1007/s10854-018-9983-2

    Article  CAS  Google Scholar 

  31. J. Hao, Y. Zhang, X. Wei, Angew. Chem. Int. Ed. 50, 6876–6880 (2011)

    Article  CAS  Google Scholar 

  32. T. Mazon, A.C. Hernandes, A.G. Souza Filho, A.P.A. Moraes, A.P. Ayala, P.T.C. Freire, J.M. Filho, J. Appl. Phys. 97, 104113 (2005). https://doi.org/10.1063/1.1901834

    Article  CAS  Google Scholar 

  33. Z. Abdelkafi, G. Khasskhoussi, N. Abdelmoula, H. Khemakhem, Ferroelectric Ceram. Int 41, 14839–14844 (2015). https://doi.org/10.1016/j.ceramint.2015.08.011

    Article  CAS  Google Scholar 

  34. J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2011). https://doi.org/10.1063/1.3592192

    Article  CAS  Google Scholar 

  35. Q. Liu, J. Liu, D. Lu, W. Zheng, C. Hu, J. Alloys Compd 760, 31–41 (2018). https://doi.org/10.1016/j.jallcom.2018.05.089

    Article  CAS  Google Scholar 

  36. H. Kaddoussi, N. Abdelmoulaa, Y. Gagou, D. Mezzane, H. Khemakhem, M. Elmarssi, Ceram. Int 40, 10255–10261 (2014). https://doi.org/10.1016/j.ceramint.2014.02.115

    Article  CAS  Google Scholar 

  37. M. Runowskia, P. Woźnya, I.R. Martínb, V. Lavínb, S. Lisa, J. Lumin. 214, 116571 (2019). https://doi.org/10.1016/j.jlumin.2019.116571

    Article  CAS  Google Scholar 

  38. J. Zhou, Y. Teng, X. Liu, Z. Ma, J. Qiu, J. Mater. Res. 26, 689–692 (2011). https://doi.org/10.1557/jmr.2010.84

    Article  CAS  Google Scholar 

  39. M. Pereira, A.G. Peixoto, M.J.M. Gomes, J. Eur. Ceram. Soc. 21, 1353–1356 (2001). https://doi.org/10.1016/S0955-2219(01)00017-6

    Article  CAS  Google Scholar 

  40. Q. Zhang, H. Sun, X. Wang, Y. Zhang, X. Li, J. Eur. Ceram. Soc. 34, 1439–1444 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.028

    Article  CAS  Google Scholar 

  41. E. Siegel, K.A. Müller, Phys. Rev. B 20, 3587 (1979). https://doi.org/10.1103/PhysRevB.20.3587

    Article  CAS  Google Scholar 

  42. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473–484 (2013). https://doi.org/10.1016/j.jallcom.2013.06.104

    Article  CAS  Google Scholar 

  43. A. Lahmar, N. Pfeiffer, S. Habouti, M. Es-Souni, Ceram. Int. 41, 443–449 (2015). https://doi.org/10.1016/j.ceramint.2014.08.089

    Article  CAS  Google Scholar 

  44. J. Yamauchi, M. Tsukada, S. Watanabe, O. Sugino, Phys. Rev. B 54, 5586 (1996). https://doi.org/10.1103/PhysRevB.54.5586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute of Research on Ceramics (University of Limoges, France). The author would like to thank the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the fast-track research funding program funded this research.

Author information

Authors and Affiliations

Authors

Contributions

ZR: conception, design of study. PM: data curation and writing—review and editing. MB: investigation, software. JL: data curation and writing. TA: data curation. HB: data curation and writing.

Corresponding authors

Correspondence to P. Marchet or H. Belmabrouk.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human participants or animals

Not applicable. The study does not involve humans or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raddaoui, Z., Marchet, P., Bourguiba, M. et al. Effect of rare earth substitution on pyroelectric, ferroelectric, and piezoelectric properties lead-free Ba0.85Ca0.12RE0.03Ti0.90Zr0.04Nb0.042O3 (RE = Ce or Pr) ceramics. J Mater Sci: Mater Electron 34, 1736 (2023). https://doi.org/10.1007/s10854-023-11051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11051-z

Navigation