Skip to main content
Log in

Evolution of structure and properties of BiFeO3–(Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 high Curie temperature lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BiFeO3-based ceramics is the high-temperature piezoelectric material with great potential applications. In this paper, the evolution of structure and properties of BiFeO3–(Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 (BFO–BCTH) ceramics was investigated. XRD analysis showed that rhombohedral R3c phase and pseudocubic (PC) phase coexisted in all samples, and the content of PC phase increased with the increase of BCTH content. Two dielectric anomalies were observed for all BFO–BCTH samples. Among them, the dielectric relaxation at 300–500 °C exhibited a significant frequency dispersion. Besides, a frequency-independent dielectric anomaly was detected for all samples, accompanied with thermal hysteresis, indicating the primary ferroelectric phase transition, and the peak temperature slightly decreased with increasing BCTH content. The leakage current density significantly decreased with increasing doping BCTH content, and the ferroelectric and piezoelectric properties were enhanced for x = 0.25–0.27 samples. The magnetic properties of the moderately doped ceramics were significantly improved, but the magnetic dilution due to the increase in doping content led to a decrease in magnetization intensity instead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

A submission to the journal implies that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality.

References

  1. F.J. Tressler, S. Alkoy, R.E. Newnham, Piezoelectr. Sens. Sens. Mater. J Electroceram. 2, 257 (1998)

    CAS  Google Scholar 

  2. W. Dong, L.N. Sun, Z.J. Du, Design of a precision compliant parallel positioner driven by dual piezoelectric actuators. Sens. Actuat. A-Phys. 135, 250 (2007)

    Article  CAS  Google Scholar 

  3. B. Liu, K. Sha, M. Zhou, K. Song, Y. Huang, C. Hu, Novel low-εr MGa2O4 (M = Ca, Sr) microwave dielectric ceramics for 5 G antenna applications at the Sub-6 GHz band. J. Eur. Ceram. Soc. 41, 5170 (2021)

    Article  CAS  Google Scholar 

  4. Y.B. Jeon, R. Sood, J. Jeong, S.-G. Kim, MEMS power generator with transverse mode thin film PZT. Sens. Actuat. A-Phys. 122, 16 (2005)

    Article  CAS  Google Scholar 

  5. F.P. Sun, Z. Chaudhry, C. Liang, C.A. Rogers, Truss structure Integrity Identification using PZT sensor-actuator. J. Intel Mat. Syst. Str. 6, 134 (1995)

    Article  Google Scholar 

  6. T. Takenaka, K. Maruyama, K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free Piezoelectric Ceramics. Jpn J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  7. Y.J. Dai, X.W. Zhang, K.P. Chen, Morphotropic phase boundary and electrical properties of K1 – xNaxNbO3 lead-free ceramics. Appl. Phys. Lett. 94, 4141 (2009)

    Article  Google Scholar 

  8. S.E. Cummins, L.E. Cross, Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J. Appl. Phys. 39, 2268 (1968)

    Article  CAS  Google Scholar 

  9. B. Liu, L. Li, K. Song, M. Mao, Z. Lu, G. Wang, L. Li, D. Wang, D. Zhou, A. Feteira, I.M. Reaney, Enhancement of densification and microwave dielectric properties in LiF ceramics via a cold sintering and post-annealing process. J. Eur. Ceram. Soc. 41, 1726 (2021)

    Article  CAS  Google Scholar 

  10. B. Liu, K. Sha, Y. Jia, Y. Huang, C. Hu, L. Lei, D. Wang, D. Zhou, K. Song, High quality factor cold sintered LiF ceramics for microstrip patch antenna applications. J. Eur. Ceram. Soc. 41, 4835 (2021)

    Article  CAS  Google Scholar 

  11. D.V. Karpinsky, M.V. Silibin, S.V. Trukhanov, A.V. Trukhanov, A.L. Zhaludkevich, S.I. Latushka, D.V. Zhaludkevich, V.A. Khomchenko, D.O. Alikin, A.S. Abramov, T. Maniecki, W. Maniukiewicz, M. Wolff, V. Heitmann, A.L. Kholkin, Peculiarities of the crystal structure evolution of BiFeO3-­­BaTiO3 ceramics across structural phase transitions. Nanomaterials 10, 801 (2020)

    Article  CAS  Google Scholar 

  12. D. Karpinsky, M. Silibin, S. Latushka, D. Zhaludkevich, V. Sikolenko, R. Svetogorov, M.I. Sayyed, N. Almousa, A. Trukhanov, S.V. Trukhanov, A. Belik, Temperature driven transformation of the crystal and magnetic structures of BiFe0.7Mn0.3O3 ceramics. Nanomaterials. 12, 2813 (2022)

    Article  CAS  Google Scholar 

  13. K. Sakayori, Y. Matsui, H. Abe, E. Nakamura, M. Kenmoku, Curie temperature of BaTiO3. Jpn. J. Appl. Phys 34, 5443 (1995)

    Article  CAS  Google Scholar 

  14. H. Yu, Z.G. Ye, Dielectric properties and relaxor behavior of a new (1-x)BaTiO3-xBiAlO3 solid solution. J. Appl. Phys. 103, 241 (2008)

    Article  Google Scholar 

  15. C. Xu, D. Lin, K.W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. Solid. State. Sci. 10, 934 (2008)

    Article  CAS  Google Scholar 

  16. T. Futakuchi, T. Kakuda, Y. Sakai, Multiferroic properties of BiFeO3-BaTiO3 based ceramics. J. Ceram. Soc. Jpn. 122, 464 (2014)

    Article  Google Scholar 

  17. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater. Sci. 98, 552 (2018)

    Article  CAS  Google Scholar 

  18. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.J. Liu, Room- temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731 (2004)

    Article  CAS  Google Scholar 

  19. S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, J. Kreisel, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics. Phys. Rev. B 75, 024403 (2007)

    Article  Google Scholar 

  20. X. Qi, J. Dho, R. Tomov, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 818 (2005)

    Article  Google Scholar 

  21. Y. Sui, C. Xin, X. Zhang, Y. Wang, Y. Wang, X. Wang, Z. Liu, B. Li, X. Liu, Enhancement of multiferroic in BiFeO3 by Co doping. J. Alloy Compd. 645, 78 (2015)

    Article  CAS  Google Scholar 

  22. D. Varshney, A. Kumar, K. Verma, Effect of a site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J. Alloy Compd. 509, 8421 (2011)

    Article  CAS  Google Scholar 

  23. W. Jie, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics. Appl. Phys. Lett. 96, 102509 (2010)

    Article  Google Scholar 

  24. V.F. Freitasw, I.A. Santos, E. Botero, B.M. Fraygola, D. Garcia, J.A. Eiras, Piezoelectric characterization of (0.6)BiFeO3-(0.4)PbTiO3 multiferroic ceramics. J. Am. Ceram. Soc. 94, 754 (2011)

    Article  Google Scholar 

  25. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics. Mater. Sci. Eng. B-Adv. 176, 540 (2011)

    Article  CAS  Google Scholar 

  26. J. Chen, J.E. Daniels, J. Jian, Z. Cheng, J. Cheng, J. Wang, Q. Gu, S. Zhang, Origin of large electric-field-induced strain in pseudo-cubic BiFeO3-BaTiO3 ceramics. Acta. Mater. 197, 1 (2020)

    Article  CAS  Google Scholar 

  27. H. Yang, C. Zhou, X. Liu, G. Chen, W. Hua, W. Li, Structural, microstructural and electrical properties of BiFeO3-BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233 (2012)

    Article  CAS  Google Scholar 

  28. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000)

    Article  CAS  Google Scholar 

  29. A.M. Semaida, M.A. Darwish, M.M. Salem, D. Zhou, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, V.P. Menushenkov, A.G. Savchenko, Impact of Nd3+ substitutions on the structure and magnetic properties of nanostructured SrFe12O19 hexaferrite. Nanomaterials. 12, 3452 (2022)

    Article  CAS  Google Scholar 

  30. L. Feng, Z.M. Li, J.Y. Chen, Y.X. Yan, D.Y. Zhang, M.L. Zhang, H. Yue, High piezoelectric properties in 0.7BiFeO3-0.3BaTiO3 ceramics with MnO and MnO2 addition. J. Eur. Ceram. Soc. 42, 954–964 (2022)

    Article  Google Scholar 

  31. D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high Curie temperature. J. Eur. Ceram. Soc. 33, 3023 (2013)

    Article  CAS  Google Scholar 

  32. Y. Shi, F. Yan, X. He, K. Huang, B. Shen, J. Zhai, B-site doped BiFeO3-based piezoceramics with enhanced ferro/piezoelectric properties and good temperature stability. J. Am. Ceram. Soc. 103, 6245 (2020)

    Article  CAS  Google Scholar 

  33. Y. Tian, L. Wei, X. Chao, Z. Liu, Z. Yang, Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J. Am. Ceram. Soc. 96, 496 (2013)

    Article  CAS  Google Scholar 

  34. L. Zhao, B. Zhang, P. Zhou, N. Li. Zhu, Wang, Piezoelectric and ferroelectric properties of (ba, ca)(Ti, Sn)O3 lead-free ceramics sintered with Li2O additives: analysis of point defects and phase structures. Ceram. Int. 42, 1086 (2016)

    Article  CAS  Google Scholar 

  35. C.L. Zhao, W.J. Wu, H. Wang, J. Wu, Site engineering and polarization characteristics in (Ba1 – yCay)(Ti1 – xHfx)O3 lead-free ceramics. J. Appl. Phys. 119, 24108 (2016)

    Article  Google Scholar 

  36. P.E. Rubavathi, S.M. Benoy, K. Baskar, L. Venkidu, M.V.G. Babu, D. Dhayanithi, N.V. Giridharan, B. Sundarakannan, Impact of non-magnetic BaTiO3 substitution on structure, magnetic, thermal and ferroelectric properties of BiFeO3 ceramics at morphotropic phase boundary. Mater. Chem. Phys. 255, 123560 (2020)

    Article  CAS  Google Scholar 

  37. D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov, J. Kohout, T. Kmječ, O. Yakovenko, L. Matzui, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Structure and magnetodielectric properties of titanium substituted barium hexaferrites. Ceram. Int. 47, 17293–17306 (2021)

    Article  CAS  Google Scholar 

  38. V. Turchenko, A.S. Bondyakov, S. Trukhanov, I. Fina, V.V. Korovushkin, M. Balasoiu, S. Polosan, B. Bozzo, N. Lupu, A. Trukhanov, Microscopic mechanism of ferroelectric properties in barium hexaferrites. J. Alloys Compd. 931, 167433 (2023)

    Article  CAS  Google Scholar 

  39. S.V. Trukhanov, D.P. Kozlenko, A.V. Trukhanov, High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites. J. Magn. Magn. Mater. 320, e88–e91 (2008)

    Article  CAS  Google Scholar 

  40. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors. 20, 4851 (2020)

    Article  CAS  Google Scholar 

  41. B.S. Kang, S.K. Choi, C.H. Park, Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700°C. J. Appl. Phys. 94, 1904 (2003)

    Article  CAS  Google Scholar 

  42. G. Xu, Z. Zhong, Y. Bing, Z. Ye, G. Shirane, Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134 (2006)

    Article  CAS  Google Scholar 

  43. H. Pan, F. Li, Y. Liu et al., Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science. 365, 578 (2019)

    Article  CAS  Google Scholar 

  44. B. Ramachandran, A. Dixit, R. Naik, G. Lawes, M. Rao, Charge transfer and electronic transitions in polycrystalline BiFeO3. Phys. Rev. B 82, 012102 (2010)

    Article  Google Scholar 

  45. G.L. Yuan, S.W. Or, Y.P. Wang, Z.G. Liu, J.M. Liu, Preparation and multi- properties of insulated single-phase BiFeO3 ceramics. Solid. State. Commun. 138, 76 (2006)

    Article  CAS  Google Scholar 

  46. J. Liu, M. Niu, L. Wang, C. Peng, D. Xu, Effect of tuning A/B substitutions on multiferroic characteristics of BiFeO3-based ternary system ceramics. J. Magn. Magn. Mater. 510, 166928 (2020)

    Article  CAS  Google Scholar 

  47. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, Magnetic and electrical properties of single-phase multiferroic BiFeO3. J. Appl. Phys. 97, 093903 (2005)

    Article  Google Scholar 

  48. M. Niu, J. Liu, T. Sun, R. Jiang, D. Xu, Effect of transition metal element substitution on magnetoelectric properties of BiFeO3-BaTiO3 ceramics. J. Alloy Compd. 859, 158224 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National key research and development program (2022YFB3807602), National Natural Science Foundation of China (Grant No. 51802003), Natural Science Foundation of Anhui Provincial Education Department (KJ2021A0362, KJ2020A0271).

Funding

This study was supported by National key research and development program, 2022YFB3807602; National Natural Science Foundation of China, 51802003; Natural Science Foundation of Anhui Provincial Education Department, KJ2021A0362; KJ2020A0271.

Author information

Authors and Affiliations

Authors

Contributions

XTG: Data curation, Writing—Original draft preparation; ZLY: Writing—Review & Editing; LLL: Formal analysis; LLX: Investigation; YXS: Visualization, JL: Conceptualization, Supervision.

Corresponding author

Correspondence to Juan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X.T., Yu, Z.L., Liu, L.L. et al. Evolution of structure and properties of BiFeO3–(Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 high Curie temperature lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 34, 1623 (2023). https://doi.org/10.1007/s10854-023-11046-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11046-w

Navigation