Skip to main content

Advertisement

Log in

A heterostructure NiCo-layered double hydroxide nanosheets/Co3O4 Nanowires/Ni foam for the enhanced oxygen evolution reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt oxide (Co3O4) is a promising non-noble metal electrocatalyst for oxygen evolution reaction (OER), but it is hard to provide competitive performance relative to noble metal catalysts. In this paper, Cobalt oxide (Co3O4) nanowires/Ni foam (NF) for oxygen evolution reaction (OER) activity is enhanced by coupling NiCo-layered double hydroxide (NiCo-LDH) nanosheets on the surface. The prepared heterogeneous structure affects the electronic structure of Cobalt oxide (Co3O4), improving the intrinsic activity and resulting in an enhanced oxygen evolution reaction (OER) performance. The overpotential is only required 143 mV to reach 20 mA·cm−2 in an alkaline environment (1-M KOH). This paper provides a potential strategy for high-efficiency oxygen evolution reaction (OER).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration by another publisher. The corresponding author declares that all the data and materials are available.

References

  1. M. Rezayeenik, M. Mousavi-Kamazani, S. Zinatlo-Ajabshir, CeVO4/rGO nanocomposite: facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage. Appl. Phys. A 129, 47 (2023)

    Article  CAS  Google Scholar 

  2. M.H. Esfahani, S. Zinatloo-Ajabshir, H. Naji, C.A. Marjerrison, J.E. Greedan, M. Behzad, Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE=Dy, Ho, and Yb) microstructures. Ceram. Int. 49, 253–263 (2023)

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  CAS  Google Scholar 

  4. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. J Mol. Liq. 243, 219–226 (2017)

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Sadat Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. Part B-Eng. 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  6. M. Ghodrati, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram. Int. 46, 28894–28902 (2020)

    Article  CAS  Google Scholar 

  7. A. Zonarsaghar, M. Mousavi-Kamazani, S.R. Zinatloo-Ajabshir, Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. Int. J. Hydrogen Energy 47, 5403–5417 (2022)

    Article  CAS  Google Scholar 

  8. M. Ghodrati, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Hydrothermal synthesis of CeVO4 nanostructures with different morphologies for electrochemical hydrogen storage. Ceram. Int. 47, 35248–35259 (2021)

    Article  Google Scholar 

  9. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  10. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod. 222, 103–110 (2019)

    Article  CAS  Google Scholar 

  11. Y. Liu, M. Zhang, D. Hu, R. Li, K. Hu, K. Yan, Ar Plasma-Exfoliated ultrathin NiCo-Layered double hydroxide nanosheets for enhanced oxygen evolution. ACS Appl. Energy Mater. 2, 1162–1168 (2019)

    Article  CAS  Google Scholar 

  12. C. Chang, L. Zhang, C.W. Hsu, X.F. Chuah, S.Y. Lu, Mixed NiO/NiCo2O4 nanocrystals grown from the skeleton of a 3D porous Nickel network as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mat. Interfaces 10, 417–426 (2018)

    Article  CAS  Google Scholar 

  13. Y. Wang, M. Qiao, Y. Li, S. Wang, Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 14, e1800136 (2018)

    Article  Google Scholar 

  14. H. Li, L. Mcrae, C. Firby, M. Al-Hussein, A. Elezzabi, Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution- processed fully reversible switching of energy storing smart windows. Nano Energy 47, 130–139 (2018)

    Article  CAS  Google Scholar 

  15. X. Zhao, Y. Fu, J. Wang, Y. Xu, J.-H. Tian, R. Yang, Ni-doped CoFe2O4 hollow nanospheres as efficient Bi-functional catalysts. Electrochim. Acta 201, 172–178 (2016)

    Article  CAS  Google Scholar 

  16. Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu, Z. Shao, A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 7, 1602122 (2017)

    Article  Google Scholar 

  17. C. Zhu, S. Fu, D. Du, Y. Lin, Facilely tuning porous NiCo2O4 nanosheets with metal valence-state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting. Chem. Eur. J. 22, 4000–4007 (2016)

    Article  CAS  Google Scholar 

  18. Z. Xiao, Y. Wang, Y. Huang, Z. Wei, C. Dong, J. Ma, S. Shen, Y. Li, S. Wang, Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for the overall water splitting. Energ. Environ. Sci. 12, 2563–2569 (2017)

    Article  Google Scholar 

  19. P. Yu, Y. Cheng, J. Chen, W. Smith, P. Dong, P.M. Ajayan, M. Ye, J. Shen, Recent developments of transition metal phosphides as catalysts in the field of energy conversion. J. Mater. Chem. A 46, 23220–23243 (2018)

    Google Scholar 

  20. S. Wan, J. Qi, W. Zhang, W. Wang, S. Zhang, K. Liu, H. Zheng, J. Sun, S. Wang, R. Cao, Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29, 1700286 (2017)

    Article  Google Scholar 

  21. T.I. Singh, G. Rajeshkhanna, U.N. Pan, T. Kshetri, H. Lin, N.H. Kim, J.H. Lee, Alkaline water splitting enhancement by MOF-derived Fe-Co-Oxide/Co@NC-mNS heterostructure: boosting OER and HER through defect engineering and in situ oxidation. Small 17, 2101312 (2021)

    Article  CAS  Google Scholar 

  22. M. Li, X. Pan, M. Jiang, Y. Zhang, Y. Tang, G. Fu, Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 395, 125160 (2020)

    Article  CAS  Google Scholar 

  23. W. Chen, Y. Zhang, G. Chen, Y. Zhou, X. Xiang, K.K. Ostrikov, Interface coupling of Ni-Co layered double hydroxide nanowires and Cobalt-based Zeolite organic frameworks for efficient overall water splitting. ACS Sustain. Chem. Eng. 7, 8255–8264 (2019)

    Article  CAS  Google Scholar 

  24. J. Yan, L. Chen, X. Liang, Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci. Bull. 64, 158–165 (2019)

    Article  CAS  Google Scholar 

  25. C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, J. Qiu, NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon 110, 1–7 (2016)

    Article  CAS  Google Scholar 

  26. P. Yin, G. Wu, X. Wang, S.E. Liu, F. Zhou, L. Dai, X. Wang, B. Yang, Z. Yu, NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res. 12, 4783–4788 (2021)

    Article  Google Scholar 

  27. Y. Sun, X. Ren, S. Sun, Z. Liu, S. Xi, Z.J. Xu, Engineering high-spin state Cobalt cations in spinel Zinc Cobalt oxide for spin channel propagation and active site enhancement in water oxidation. Angew. Chem. Int. Edit. 60, 14536–14544 (2021)

    Article  CAS  Google Scholar 

  28. R. Fernandes, N. Patel, A. Miotello, Efficient catalytic properties of Co-Ni-P-B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4. Int. J. Hydrogen Energy 7, 2893–2900 (2009)

    Article  Google Scholar 

  29. Y. Shang, R. Chen, Hydrogen storage via the hydrolysis of NaBH4 basic solution: optimization of NaBH4 concentration. Energy Fuel. 5, 2141–2148 (2006)

    Google Scholar 

  30. T. Choudhury, S.O. Saied, J.L. Sullivan, A.M. Abbot, Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys. 8, 1185–1195 (1989)

    Article  Google Scholar 

  31. Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, Coupling molecularly ultrathin sheets of NiFe-Layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Inter. 9, 1488–1495 (2017)

    Article  CAS  Google Scholar 

  32. R. Boppella, J. Tan, W. Yang, J. Moon, Homologous CoP/NiCoP heterostructure on N-Doped carbon for highly efficient and pH-Universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 29, 1807976 (2018)

    Article  Google Scholar 

  33. W. Zou, C. Sun, K. Zhao, J. Li, X. Pan, D. Ye, Y. Xie, W. Xu, H. Zhao, L. Zhang, J. Zhang, 1 Surface reconstruction of NiCoP pre-catalysts for bifunctional water splitting in alkaline electrolyte. Electrochim. Acta 345, 36114 (2020)

    Article  Google Scholar 

  34. H. Liu, X. Ma, H. Hu, Y. Pan, W. Zhao, J. Liu, X. Zhao, J. Wang, Z. Yang, Q. Zhao, H. Ning, M. Wu, Robust NiCoP/CoP heterostructures for highly efficient hydrogen evolution electrocatalysis in alkaline solution. ACS Appl. Mater. Inter. 11, 15528–15536 (2019)

    Article  CAS  Google Scholar 

  35. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W. Lou, Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 11, 872–880 (2018)

    Article  CAS  Google Scholar 

  36. J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017)

    Article  CAS  Google Scholar 

  37. X. Wang, R. Tong, Y. Wang, H. Tao, Z. Zhang, H. Wang, Surface roughening of Nickel Cobalt Phosphide nanowire arrays/Ni foam for enhanced hydrogen evolution activity. ACS Appl. Mater. Inter. 8, 34270–34279 (2016)

    Article  CAS  Google Scholar 

  38. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013)

    Article  CAS  Google Scholar 

  39. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. 53, 102–121 (2014)

    Article  CAS  Google Scholar 

  40. E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci. Technol. 4, 3800–3821 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by Characteristic innovation projects of ordinary colleges and universities in Guangdong Province (2022KTSCX134), the Science and Technology Project of Jiaying University (2022KJY19), University Engineering Technology Center of Guangdong (2022GCZX007), and the Project of Educational Commission of Guangdong Province (2021KQNCX088).

Author information

Authors and Affiliations

Authors

Contributions

LZ participated in the Conceptualization, Methodology, Formal Analysis, Investigation, and Writing of the original draft. YL participated in the Original draft preparation, Reviewing, and Editing of the manuscript, Visualization, and Supervision. JH, YC, CG, ZY, QL, YZ, TL, QL, and LL participated in the Resources, Data Curation, and Investigation. BL and RC participated in the Writing, Review, and Editing of the manuscript and Project administration.

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Ethical approval

This work is not applicable to both human and/or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 281 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., He, J., Chen, Y. et al. A heterostructure NiCo-layered double hydroxide nanosheets/Co3O4 Nanowires/Ni foam for the enhanced oxygen evolution reaction. J Mater Sci: Mater Electron 34, 1626 (2023). https://doi.org/10.1007/s10854-023-11038-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11038-w

Navigation