Skip to main content

Advertisement

Log in

Achieving dense microstructure with desired physical properties rapidly and inexpensively in Bi-modified SrTiO3 ceramics via microwave sintering technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Researchers are paying constant attention to preparing ceramic materials faster and cheaper while obtaining optimal physical properties. Their goal is to achieve a smaller grain size that will enable them to enhance the breakdown strength, thus increasing the density and efficiency of energy storage material. In line with this objective, two samples of Sr0.95Bi0.05TiO3 ceramics were selected: one was sintered at 1250 °C for 4 h using a conventional sintering CS process, while the other was sintered at the same temperature for 20 min using a microwave sintering system MWS. Both sintered samples showed a single cubic phase, as confirmed by refinement of the X-ray diffraction data. Morphological results show that the microwave-sintered sample ceramics show better densification exceeding 98%. The morphological results also show that the grain size obtained via microwave sintering is ten times smaller than that obtained with the conventional sintering technique. The P–E loop study shows that the breakdown strength with a microwave sintering system increased 1.5 times compared to the CS technique, resulting in enhanced energy storage density from 0.215 to 0.325 J/cm3. This intriguing technology has energy-saving qualities, quick processing, and homogeneous temperature distribution over the sample. According to our findings, the microwave processing method is one of the most attractive methods that can be used to develop new electronic materials for the next generation of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that have been used is confidential and included in the manuscript.

References

  1. B. Szafraniak, Ł Fuśnik, Xu. Jie, F. Gao, A. Brudnik, A. Rydosz, A Rev. Coat. 11(2), 185 (2021)

    CAS  Google Scholar 

  2. A. Rached, M.A. Wederni, K. Khirouni, S. Alaya, R.J. Martín-Palma, J. Dhahri, Mater. chem. Phys. 267, 124600 (2021)

    Article  CAS  Google Scholar 

  3. A. Mathur, H. Fan, V. Maheshwari, Adv. Mater. 2(16), 5274–5299 (2021)

    Article  CAS  Google Scholar 

  4. L. Liu, B. Chu, P. Li, Fu. Peng, Du. Juan, J. Hao, W. Li, H. Zeng, J. Chem. Eng. 429, 132548 (2022)

    Article  CAS  Google Scholar 

  5. R.D. Leapman, L.A. Grunes, P.L. Fejes, Phys. Rev. B 26, 614–635 (1982)

    Article  CAS  Google Scholar 

  6. S. Saleem, S.A. Aldaghfag, M. Yaseen et al., Eur. Phys. J. Plus. 121, 137 (2022)

    Google Scholar 

  7. Z. Zhang, P. Qian, X. Yang, W. Baixi, H.L. Cai, F.M. Zhang, X.S. Wu, Sci. Rep. 12, 2499 (2022)

    Article  CAS  Google Scholar 

  8. M.S. Alkathy, F.L. Zabotto, F.P. Milton et al., J. Mater. Sci.: Mater. Electron. 33, 15483–15494 (2022)

    CAS  Google Scholar 

  9. K. Iwashina, A. Kudo, J. Am. Chem. Soc. 133, 13272–13275 (2011)

    Article  CAS  Google Scholar 

  10. J. Xu, Y. Wei, Y. Huang, J. Wang, X. Zheng, Z. Sun, L. Fan, Wu. Jihuai, Ceram. Int. 40, 10583–10591 (2014)

    Article  CAS  Google Scholar 

  11. F. Yi, He. Li, H. Chen, R. Zhao, X. Jiang, Ceram Int. 39, 347–352 (2013)

    Article  CAS  Google Scholar 

  12. F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao, P.P. Edwards, Chem. Commun. 48, 8514–8516 (2012)

    Article  CAS  Google Scholar 

  13. F. Cai, Y. Meng, Hu. Bo, Y. Tang, W. Shi, RSC Adv. 5, 57354–57360 (2015)

    Article  CAS  Google Scholar 

  14. S. Merrad, M. Abbas, R. Brahimi, B. Bellal, M. Trari, J. Mater. Sci.: Mater. Electron. 34, 206 (2023)

    CAS  Google Scholar 

  15. B. Zhao, Z. Yan, D. Yiqian, L. Rao, G. Chen, W. Yuyang, L. Yang et al., Adv. Mater. 35, 2210243 (2023)

    Article  CAS  Google Scholar 

  16. H.-y Lin, L.-T. Cian, Appl. Sci. 9, 55 (2018)

    Article  Google Scholar 

  17. G.J. Lee, E.K. Park, S.A. Yang et al., Sci. Rep. 7, 46241 (2017)

    Article  Google Scholar 

  18. T. Rojac, A. Benčan, M. Kosec, J. Am. Ceram. Soc. 93, 1619–1625 (2010)

    CAS  Google Scholar 

  19. M. Oghbaei, O. Mirzaee, J. Alloys Compd. 494, 175–189 (2010)

    Article  CAS  Google Scholar 

  20. A. Barba, C. Clausell, C. Feliu, M. Monzo, J. Am. Ceram. Soc. 87(4), 571–577 (2004)

    Article  CAS  Google Scholar 

  21. E. Cai, Q. Liu, F. Zeng, Y. Wang, A. Xue, Ceram. Int. 44, 788–798 (2018)

    Article  CAS  Google Scholar 

  22. M. Chandrasekhar, P. Kumar, Ceram. Int. 42, 10587–10592 (2016)

    Article  Google Scholar 

  23. R. Rani, P. Kumar, S. Singh, J.K. Juneja, K.K. Raina, C. Prakash, Integr. Ferroelectr. 122, 45–51 (2010)

    Article  CAS  Google Scholar 

  24. M.S. Alkathy, K.C. JamesRaju, Albaydha Univ. J. 1(2), 235–240 (2019)

    Article  Google Scholar 

  25. A. Kumar, S.R. Emani, K.C. James Raju, J. Ryu, A.R. James, Energies 13, 6457 (2020)

    Article  CAS  Google Scholar 

  26. Z. Yu, C. Chen Ang, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, J. Appl. Phys. 83(9), 4874–4877 (1998)

    Article  CAS  Google Scholar 

  27. Y.F. Wei, C.H. Kao, C.F. Yang, H.H. Huang, C.J. Huang, Mater. Lett. 61, 4643 (2007)

    Article  CAS  Google Scholar 

  28. Y. Zheng, X.Z. Zhao, W. Lei, S.X. Wang, Mater. Lett. 60, 459 (2006)

    Article  CAS  Google Scholar 

  29. Y.F. Wei, H.H. Chung, C.F. Yang, K.H. Chen, C.C. Diao, C.H. Kao, J. Phys. Chem. Solids 69, 934 (2008)

    Article  CAS  Google Scholar 

  30. Da Silva, Luis F., Waldir Avansi, Mário L. Moreira, Alexandre Mesquita, Lauro JQ Maia, Juan Andrés, Elson Longo, Valmor R. Mastelaro 2012 Journal of Nanomaterials. https://doi.org/10.1155/2012/890397

  31. D. Agrawal, Sint Adv Mater (Elsevier, Amsterdam, 2012)

    Google Scholar 

  32. R.R. Mishra, A.K. Sharma Appl. Sci. Manuf. 81, 78–97 (2016).

  33. S. Charmond, C.P. Carry, D. Bouvard, J. Eur. Ceram. Soc. 30, 1211–1221 (2010)

    Article  CAS  Google Scholar 

  34. A. Borrell, M.D. Salvador, F.L. Peñaranda-Foix, J.M. Cátala-Civera, Microwave sintering of zirconia. Inter. J. Appl. Ceram. Tech. 10, 313–320 (2013)

    Article  CAS  Google Scholar 

  35. D.E. Clark, W.H. Sutton, Rev. Mater. Sci. 26, 299–331 (1996)

    Article  CAS  Google Scholar 

  36. M. Mazaheri, A. Zahedi, M. Hejazi, Mater. Sci. Eng. A. 492, 261–267 (2008)

    Article  Google Scholar 

  37. Alkathy, Mahmoud S., Fabio L. Zabotto, Manuel H. Lente, and J. A. Eiras. 2020 Aas. J Phys D Appl Phys. 53: 465106.

  38. H.T. Langhammer, T. Muller et al., J. Phys. 20, 085206 (2008)

    Google Scholar 

  39. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, J. Am. Ceram. Soc. 84, 376–384 (2001)

    Article  CAS  Google Scholar 

  40. M.S. Alkathy, K.C. James Raju, J.A. Eiras, J. Phys. D Appl. Phys. 54, 125501 (2021)

    Article  CAS  Google Scholar 

  41. B. Erdem, R.A. Hunsicker, G.W. Simmons, E. David Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664–2669 (2001)

    Article  CAS  Google Scholar 

  42. J. Liu, J. Xu, B. Cui et al., J. Mater. Sci.: Mater. Electron. 31, 5205–5213 (2020)

    CAS  Google Scholar 

  43. W. Hu, L. Yun, R.L. Withers, T.J. Frankcombe, N. Lasse, S. Amanda, K. Melanie et al., Nat. Mater. 12, 821–826 (2013)

    Article  CAS  Google Scholar 

  44. P.R. Deepthi, A. Sukhdev, P.M. Kumar et al., Appl. Sci. 2, 1493 (2020)

    CAS  Google Scholar 

  45. M. Samet, A. Kallel, A. Serghei, J. Compos. Mater. 56(20), 3197–3217 (2022)

    Article  CAS  Google Scholar 

  46. M.E. Hajlaoui, E. Dhahri, K. Khirouni, J. Mater. Sci.: Mater. Electron. 33, 18858–18870 (2022)

    CAS  Google Scholar 

  47. V.R. Mudinepalli, L. Feng, L. Wen-Chin, B.S. Murty, J. Adv. Ceram. 4, 46–53 (2015)

    Article  CAS  Google Scholar 

  48. H. Yang, F. Yan, Y. Lin, T. Wang, L. He, F. Wang, J. Alloys Compd. 710, 436–445 (2017)

    Article  CAS  Google Scholar 

  49. A. Kumar, S.H. Kim, A. Thakre et al., J. Therm. Spray Tech. 30, 591–602 (2021)

    Article  CAS  Google Scholar 

  50. M.S. Alkathy, A. Rahaman, V.R. Mastelaro, F.L. Zabotto, F.P. Milton, J.A. Eiras, J. Alloys Compd. 934, 167887 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the experimental facilities provided by CNPq and FAPESP in Grupo de Materiais Ferroic (GMF), Physics Department/ UFSCar. For financial support, Dr. Alkathy and Prof Eiras are greatly indebted to the Sao Paulo Research Foundation FAPESP (Grant No. 2017/13769-1 and Grant No. 2019/03110-8). Dr. Syed Mansoor sincerely appreciates funding from Researchers Supporting Project number (RSPD2023R699), King Saud University, Riyadh, Saudi Arabia. Prof. KCJR acknowledges the Abdul Kalam Technology Innovation National Fellowship awarded to him by INAE and the Institution of Eminence program of the University of Hyderabad awarded by MHRD.

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo, 2019/03110-8, Mahmoud Alkathy, 2017/13769-1,J. A. Eiras, King Saud University, RSPD2023R699, Syed Mansoor Ali

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the preparation of the manuscript. MSA: synthesized, analyzed, and interpreted data, calculations, visualization, conceptualization, methodology, and writing of the original draft. SMA: contributed to investigation and interpretation of the data. JPG: contributed to microwave sintering work. FLZ: contributed to investigation, discussion, and data analysis. FPM: contributed to investigation and P.E. loop measurement. AS: contributed to investigation, sample polishing, and electrode preparations. VRM: contributed to investigation and XPS measurements. KCJR & JAE: contributed to supervision, reviewed, validated, wrote, reviewed, and approved the final version.

Corresponding authors

Correspondence to Mahmoud. S. Alkathy, K. C. James Raju or J. A. Eiras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal rights

This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Ali, S.M., Goud, J.P. et al. Achieving dense microstructure with desired physical properties rapidly and inexpensively in Bi-modified SrTiO3 ceramics via microwave sintering technique. J Mater Sci: Mater Electron 34, 1616 (2023). https://doi.org/10.1007/s10854-023-11034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11034-0

Navigation