Skip to main content

Advertisement

Log in

Enhancement of ferroelectric polarization in magnetoelectric coupled manganese ferrite (MnFe2O4)/P(VDF-TrFE) nanocomposite polymer films at room temperature and solar energy (thermal) harvesting using pyroelectric effect of these films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Functional materials serve not only the specific device requirements but also find utility in diverse applications due to their unique properties. One such functional MnFe2O4/P(VDF-TrFE) nanocomposite was fabricated in free standing films form and it is found that these films exhibit multiferroic characteristics at room temperature. The nanocomposite films demonstrate a strong coupling between electric and magnetic dipoles, resulting in a magnetoelectric coupling voltage coefficient of 156.14 ± 3.12 mV/Oe-cm through a stress–strain transfer mechanism. Additionally, the incorporation of MnFe2O4 nanoparticles into the P(VDF-TrFE) matrix enhances the ferroelectric polarization of the nanocomposite films. Consequently, these films are utilized to explore solar energy (thermal) harvesting through their pyroelectric properties. Remarkably, these nanocomposite films achieve an output power of 2.66 ± 0.01 nW/cm2 when converting solar energy to electric energy with a 10 GΩ load resistance. Therefore, the MnFe2O4/P(VDF-TrFE) nanocomposite films, acting as true smart materials, hold potential not only for ME coupling devices but also for solar energy (thermal) harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. N. Pereira, A.C. Lima, S. Lanceros-Mendez, P. Martins, Materials (Basel). 13, 1729 (2020)

    Article  CAS  Google Scholar 

  2. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    Article  CAS  Google Scholar 

  3. A. Lasheras, J. Gutiérrez, S. Reis, D. Sousa, M. Silva, P. Martins, S. Lanceros-Mendez, J.M. Barandiarán, D.A. Shishkin, A.P. Potapov, Smart Mater. Struct. 24, 065024 (2015)

    Article  Google Scholar 

  4. P. Martins, S. Lanceros-Méndez, Adv. Funct. Mater. 23, 3371 (2013)

    Article  CAS  Google Scholar 

  5. R.P. Ummer, R. Raneesh, C. Thevenot, D. Rouxel, S. Thomas, N. Kalarikkal, RSC Adv. 6, 28069 (2016)

    Article  CAS  Google Scholar 

  6. C. Porwal, S. Verma, M. Kumar, V.S. Chauhan, R. Vaish, Nano-Struct. Nano-Objects 34, 100969 (2023)

    Article  CAS  Google Scholar 

  7. T. Furukawa, Adv. Colloid Interface Sci. 71–72, 183 (1997)

    Article  Google Scholar 

  8. V. Bharti, Q.M. Zhang, Phys. Rev. B Condens. Matter Mater. Phys. 63, 1 (2001)

    Article  Google Scholar 

  9. K. Yu, Y. Niu, Y. Bai, Y. Zhou, H. Wang, Appl. Phys. Lett. 102, 10 (2013)

    Google Scholar 

  10. T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, A.C.S. Appl, Mater. Interfaces 3, 2184 (2011)

    Article  CAS  Google Scholar 

  11. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.Y. Cheng, H. Xu, C. Huang, Nature 419, 284 (2002)

    Article  CAS  Google Scholar 

  12. H.L.W. Chan, P.K.L. Ng, C.L. Choy, Appl. Phys. Lett. 74, 3029 (1999)

    Article  CAS  Google Scholar 

  13. J.X. Zhang, J.Y. Dai, L.C. So, C.L. Sun, C.Y. Lo, S.W. Or, H.L.W. Chan, J. Appl. Phys. 105, 10 (2009)

    Google Scholar 

  14. K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, J. Nanosci. Nanoeng. 1, 178 (2015)

    Google Scholar 

  15. K. Asghar, M. Qasim, D. Das, Mater. Today Proc. 26, 87 (2018)

    Article  Google Scholar 

  16. A. Sivakumar, S.S. Jude Dhas, S.A.M. Britto Dhas, Solid State Sci. 107, 106340 (2020)

    Article  CAS  Google Scholar 

  17. M.H. Choi, S.C. Yang, Mater. Lett. 223, 73 (2018)

    Article  CAS  Google Scholar 

  18. P. Martins, C.M. Costa, J.C.C. Ferreira, S. Lanceros-Mendez, J. Phys. Chem. B 116, 794 (2012)

    Article  CAS  Google Scholar 

  19. Q. Zhang, A. Agbossou, Z. Feng, M. Cosnier, Sens. Actuators A. Phys. 168, 335 (2011)

    Article  CAS  Google Scholar 

  20. G. Sebald, E. Lefeuvre, D. Guyomar, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 538 (2008)

    Article  Google Scholar 

  21. C. Ribeiro, C.M. Costa, D.M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Gonçalves, V.F. Cardoso, S. Lanceros-Méndez, Nat. Protoc. 13, 681 (2018)

    Article  CAS  Google Scholar 

  22. Z. Song, Q. Liu, Cryst. Growth Des. 20, 2014 (2020)

    Article  CAS  Google Scholar 

  23. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  CAS  Google Scholar 

  24. X. Li, X. Lian, F. Liu, CICTP 2016, in Green Multimodal Transporation and Logistics. (ASCE, Reston, 2016), p.1536

    Google Scholar 

  25. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  26. I.V. Minin, O.V. Minin, Elements of the diffraction quasi-optics; Part 2: the main applications, in Millimeter and submillimeter waves and applications: international conference. (SPIE, Cergy-Pontoise, 1994), p.2250

    Google Scholar 

  27. M.A. Denecke, W. Gunßer, G. Buxbaum, P. Kuske, Mater. Res. Bull. 27, 507 (1992)

    Article  CAS  Google Scholar 

  28. T. Ahmad, J. Korean Phys. Soc. 62, 1696 (2013)

    Article  CAS  Google Scholar 

  29. F.H. Martins, F.G. Silva, F.L.O. Paula, A.G. De Juliano, R. Aquino, J. Mestnik-Filho, P. Bonville, F. Porcher, R. Perzynski, J. Depeyrot, J. Phys. Chem. C 121, 8982 (2017)

    Article  CAS  Google Scholar 

  30. G. Turnes Palomino, S. Bordiga, A. Zecchina, G.L. Marra, C. Lamberti, J. Phys. Chem. B 104, 8641 (2000)

    Article  CAS  Google Scholar 

  31. M. Wilke, F. Farges, P.E. Petit, G.E. Brown, F. Martin, Am. Mineral. 86, 714 (2001)

    Article  CAS  Google Scholar 

  32. J.B. Goodenough, A.L. Loeb, Phys. Rev. 98, 391 (1955)

    Article  CAS  Google Scholar 

  33. E.J. Verwey, P.W. Haayman, F.C. Romeijn, J. Chem. Phys. 15, 181 (1947)

    Article  CAS  Google Scholar 

  34. P. Martins, A. Lasheras, J. Gutierrez, J.M. Barandiaran, I. Orue, S. Lanceros-Mendez, J. Phys. D. Appl. Phys. 44, 495303 (2011)

    Article  Google Scholar 

  35. A. Mayeen, M.S. Kala, M.S. Jayalakshmy, S. Thomas, D. Rouxel, J. Philip, R.N. Bhowmik, N. Kalarikkal, Dalt. Trans. 47, 2039 (2018)

    Article  CAS  Google Scholar 

  36. P. Martins, Y.V. Kolen’ko, J. Rivas, S. Lanceros-Mendez, ACS Appl. Mater. Interfaces 7, 15017 (2015)

    Article  CAS  Google Scholar 

  37. A. Mayeen, M.S. Kala, M.S. Jayalakshmy, S. Thomas, J. Philip, D. Rouxel, R.N. Bhowmik, N. Kalarikkal, Dalt. Trans. 48, 16961 (2019)

    Article  CAS  Google Scholar 

  38. J. Guttierrez, A. Lasheras, J.M. Barandiarán, R. Gonçalves, P. Martins, S. Lanceros-Mendez, IEEE Int. Magn. Conf. 19, 1–10 (2015)

    Google Scholar 

  39. A. Ahlawat, A.A. Khan, P. Deshmukh, M. Tripathi, M.M. Shirolkar, S. Satapathy, R.J. Choudhary, A.K. Karnal, J. Mater. Sci. Mater. Electron. 30, 17765 (2019)

    Article  CAS  Google Scholar 

  40. S. Pradhan, P. Deshmukh, A.A. Khan, A. Ahlawat, S.K. Rai, S. Satapathy, Smart Mater. Struct. 30, 75034 (2021)

    Article  CAS  Google Scholar 

  41. X. Mu, H. Zhang, C. Zhang, S. Yang, J. Xu, Y. Huang, J. Xu, Y. Zhang, Q. Li, X. Wang, D. Cao, S. Li, J. Mater. Sci. 56, 9728 (2021)

    Article  CAS  Google Scholar 

  42. Y.J. Ko, B.K. Yun, J.H. Jung, J. Korean Phys. Soc. 66, 713 (2015)

    Article  CAS  Google Scholar 

  43. C. Hsiao, S. Liu, Sensors 14, 22180 (2014)

    Article  CAS  Google Scholar 

  44. S.K. Ghosh, M. Xie, C.R. Bowen, P.R. Davies, D.J. Morgan, D. Manda, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  45. A.K. Batra, A. Bandyopadhyay, A.K. Chilvery, M. Thomas, Energy Sci. Technol. 5, 1 (2013)

    Google Scholar 

  46. A. Thakre, A. Kumar, H.C. Song, D.Y. Jeong, J. Ryu, Sensors 19, 1 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge RRCAT (Indore) and HBNI, Mumbai (Sanction No. DAE/LBAD/5401-00-206-83-00-52) for financial support. The authors are thankful to Shri Prem Kumar for XRD measurement and Mrs. Rashmi Singh for FESEM. Dr. Aasiya Shaikh is acknowledged for her help in FTIR measurement. One of the authors, is greatly thankful to Dr. Shilpa Tripathi, Md. Akhlak Alam and Mrs. Babita Vinayak Salaskar for XANES data analysis.

Funding

This work was supported by RRCAT (Indore) and HBNI, Mumbai (Grant No. DAE/LBAD/5401-00-206-83-00-52, LT830006). Dr. S. K. Majumder has received the grant.

Author information

Authors and Affiliations

Authors

Contributions

SP: Experiments, data collections, draft preparations, design. PD: Experiments and discussion. SNJ: XANES experiments at beam line of Indus-2, discussion. SS: Study conception, experiments, draft preparation, discussion. SKM: Fund arrangement and discussion. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Srinibas Satapathy.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, S., Deshmukh, P., Jha, S.N. et al. Enhancement of ferroelectric polarization in magnetoelectric coupled manganese ferrite (MnFe2O4)/P(VDF-TrFE) nanocomposite polymer films at room temperature and solar energy (thermal) harvesting using pyroelectric effect of these films. J Mater Sci: Mater Electron 34, 1624 (2023). https://doi.org/10.1007/s10854-023-11032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11032-2

Navigation