Skip to main content
Log in

Upconversion nanoparticles: influence of the host lattices on crystallographic and luminescent properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ytterbium/erbium co-doped NaYF4, NaGdF4, CaF2, and LaF3 upconversion nanoparticles (UCNPs) were synthesized by hydrothermal process. X-ray diffraction pattern (XRD), Thermogravimetric analysis (TGA), Fourier transforms infrared (FTIR), UV/visible, and photoluminescence spectroscopic techniques were employed to determine the crystal structure, grain size, phase pureness, thermal stability, surface functional groups, optical properties, and UC luminescence properties. CaF2 host lattice presented a cubic face-centered structure, whereas NaYF4, NaGdF4, and LaF3 host matrices exhibited a hexagonal phase of the materials. The lattice parameters were calculated from the reflection peak positions. NaYF4 host material exhibited higher thermal stability, and LaF3 was the least among the presented host matrices. FTIR spectra display the presence of carboxylic moieties which assist in the formation of colloidal solution. Absorption spectra illustrated excellent colloidal dispersibility and optical properties of the UCNPs in an aqueous solvent. Energy bandgap values were estimated from the UV/visible spectra graph plotted between (αhν)2 vs photon energy () are to be 5.64, 5.50, 5.82, and 5.71 eV for the NaYF4:Yb/Er, NaGdF4:Yb/Er, CaF2:Yb/Er, and LaF3:Yb/Er UCNPs, respectively. UC luminescence spectra were recorded to investigate the impact of the host lattices on the luminescence intensities. In the presented results, NaYF4 host matrix produces the highest emission intensity, and the LaF3 host lattice was the least among the observed results. The findings of these non-functionalized UCNPs will be highly useful in luminescent-based biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. B. Zheng, J. Fan, B. Chen et al., Chem. Rev. 122, 5519 (2022). https://doi.org/10.1021/acs.chemrev.1c00644

    Article  CAS  Google Scholar 

  2. A.A. Ansari, A.K. Parchur, M.K. Nazeeruddin, M.M. Tavakoli, Coord. Chem. Rev. 444, 214040 (2021). https://doi.org/10.1016/j.ccr.2021.214040

    Article  CAS  Google Scholar 

  3. V. Mahalingam, F. Vetrone, R. Naccache, A. Speghini, J.A. Capobianco, Adv. Mater. 21, 4025 (2009). https://doi.org/10.1002/adma.200901174

    Article  CAS  Google Scholar 

  4. C.X. Li, Z.W. Quan, J. Yang, P.P. Yang, J. Lin, Inorg. Chem. 46, 6329 (2007). https://doi.org/10.1021/ic070335i

    Article  CAS  Google Scholar 

  5. S.S.J. Dhas, S. Suresh, A. Rita, S.A.M.B. Dhas, R.G.S. Rao, C.S. Biju, J. Mater. Sci. 31, 11113 (2020). https://doi.org/10.1007/s10854-020-03660-9

    Article  CAS  Google Scholar 

  6. A.A. Ansari, M.R. Muthumareeswaran, R. Lv, Coord. Chem. Rev. 466(2022). https://doi.org/10.1016/j.ccr.2022.214584

    Article  CAS  Google Scholar 

  7. J.C. Boyer, F. Vetrone, L.A. Cuccia, J.A. Capobianco, J. Am. Chem. Soc. 128, 7444 (2006). https://doi.org/10.1021/ja061848b

    Article  CAS  Google Scholar 

  8. H. Qin, A.E. Shamso, A. Centeno et al., Phys. Chem. Chem. Phys. 19, 19159 (2017). https://doi.org/10.1039/c7cp01959a

    Article  CAS  Google Scholar 

  9. J.C. Boyer, L.A. Cuccia, J.A. Capobianco, Nano Lett. 7, 847 (2007). https://doi.org/10.1021/nl070235

    Article  CAS  Google Scholar 

  10. G.Y. Chen, H.L. Qju, P.N. Prasad, X.Y. Chen, Chem. Rev. 114, 5161 (2014). https://doi.org/10.1021/cr400425h

    Article  CAS  Google Scholar 

  11. X.M. Li, F. Zhang, D.Y. Zhao, Chem. Soc. Rev. 44, 1346 (2015). https://doi.org/10.1039/c4cs00163j

    Article  CAS  Google Scholar 

  12. J. Wang, R.R. Deng, M.A. MacDonald et al., Nat. Mater. 13, 157 (2014). https://doi.org/10.1038/Nmat3804

    Article  CAS  Google Scholar 

  13. X. Chen, D.F. Peng, Q. Ju, F. Wang, Chem. Soc. Rev. 44, 1318 (2015). https://doi.org/10.1039/c4cs00151f

    Article  CAS  Google Scholar 

  14. F. Wang, X.G. Liu, Chem. Soc. Rev. 38, 976 (2009). https://doi.org/10.1039/b809132n

    Article  CAS  Google Scholar 

  15. Q. Liu, Y. Zhang, C.S. Peng, T. Yang, L.-M. Joubert, S. Chu, Nat. Photonics 12, 548 (2018). https://doi.org/10.1038/s41566-018-0217-1

    Article  CAS  Google Scholar 

  16. F. Wang, Y. Han, C.S. Lim et al., Nature 463, 1061 (2010). https://doi.org/10.1038/nature08777

    Article  CAS  Google Scholar 

  17. F. Wang, R.R. Deng, J. Wang et al., Nat. Mater. 10, 968 (2011). https://doi.org/10.1038/Nmat3149

    Article  CAS  Google Scholar 

  18. B. Zhou, B.Y. Shi, D.Y. Jin, X.G. Liu, Nat. Nanotechnol. 10, 924 (2015). https://doi.org/10.1038/Nnano.2015.251

    Article  CAS  Google Scholar 

  19. F. Wang, R.R. Deng, X.G. Liu, Nat Protoc 9, 1634 (2014). https://doi.org/10.1038/nprot.2014.111

    Article  CAS  Google Scholar 

  20. G.Y. Chen, T.Y. Ohulchanskyy, A. Kachynski, H. Agren, P.N. Prasad, ACS Nano 5, 4981 (2011). https://doi.org/10.1021/nn201083j

    Article  CAS  Google Scholar 

  21. A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, J. Phys. Chem. B 106, 1909 (2002). https://doi.org/10.1021/jp013576z

    Article  CAS  Google Scholar 

  22. S.L. Gai, P.P. Yang, D. Wang et al., CrystEngComm 13, 5480 (2011). https://doi.org/10.1039/c1ce05455d

    Article  CAS  Google Scholar 

  23. E.W. Barrera, M.C. Pujol, F. Diaz et al., Nanotechnology 22, 075205 (2011). https://doi.org/10.1088/0957-4484/22/7/075205

    Article  CAS  Google Scholar 

  24. A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 11032 (2012). https://doi.org/10.1039/c2dt31257c

    Article  CAS  Google Scholar 

  25. V. Buissette, M. Moreau, T. Gacoin, J.P. Boilot, J.Y. Chane-Ching, T. Le Mercier, Chem. Mater. 16, 3767 (2004). https://doi.org/10.1021/cm049323a

    Article  CAS  Google Scholar 

  26. A.K. Parchur, R.S. Ningthoujam, RSC Adv. 2, 10854 (2012). https://doi.org/10.1039/c2ra20763j

    Article  CAS  Google Scholar 

  27. F. He, P.P. Yang, D. Wang et al., Dalton Trans. 40, 11023 (2011). https://doi.org/10.1039/c1dt11157d

    Article  CAS  Google Scholar 

  28. B.P. Singh, A.K. Parchur, R.K. Singh, A.A. Ansari, P. Singh, S.B. Rai, Phys. Chem. Chem. Phys. 15, 3480 (2013). https://doi.org/10.1039/c2cp44195k

    Article  CAS  Google Scholar 

  29. G. Jia, H.P. You, M. Yang, L.H. Zhang, H.J. Zhang, J. Phys. Chem. C 113, 16638 (2009). https://doi.org/10.1021/jp905540a

    Article  CAS  Google Scholar 

  30. C.M. Zhang, C.X. Li, C. Peng et al., Chem. A 16, 5672 (2010). https://doi.org/10.1002/chem.200903137

    Article  CAS  Google Scholar 

  31. N.N. Dong, M. Pedroni, F. Piccinelli et al., ACS Nano 5, 8665 (2011). https://doi.org/10.1021/nn202490m

    Article  CAS  Google Scholar 

  32. J.W. Stouwdam, F.C.J.M. van Veggel, Nano Lett. 2, 733 (2002). https://doi.org/10.1021/nl025562q

    Article  CAS  Google Scholar 

  33. F. Wang, X.P. Fan, M.Q. Wang, Y. Zhang, Nanotechnology 18, 025701 (2007). https://doi.org/10.1088/0957-4484/18/2/025701

    Article  CAS  Google Scholar 

  34. A. Noculak, A. Podhorodecki, Nanotechnology 28, 175706 (2017). https://doi.org/10.1088/1361-6528/aa6522

    Article  CAS  Google Scholar 

  35. P. Ramasamy, P. Chandra, S.W. Rhee, J. Kim, Nanoscale 5, 8711 (2013). https://doi.org/10.1039/c3nr01608k

    Article  CAS  Google Scholar 

  36. H.X. Mai, Y.W. Zhang, R. Si et al., J. Am. Chem. Soc. 128, 6426 (2006). https://doi.org/10.1021/ja060212h

    Article  CAS  Google Scholar 

  37. Z.Q. Li, Y. Zhang, Nanotechnology 19, 345606 (2008). https://doi.org/10.1088/0957-4484/19/34/345606

    Article  CAS  Google Scholar 

  38. F. He, N. Niu, L. Wang et al., Dalton Trans. 42, 10019 (2013). https://doi.org/10.1039/c3dt00029j

    Article  CAS  Google Scholar 

  39. G.F. Wang, Q. Peng, Y.D. Li, J. Am. Chem. Soc. 131, 14200 (2009). https://doi.org/10.1021/ja906732y

    Article  CAS  Google Scholar 

  40. W.Y. Yin, G. Tian, W.L. Ren et al., Dalton Trans. 43, 3861 (2014). https://doi.org/10.1039/c3dt52815d

    Article  CAS  Google Scholar 

  41. L.Y. Wang, P. Li, Y.D. Li, Adv. Mater. 19, 3304 (2007). https://doi.org/10.1002/adma.200700144

    Article  CAS  Google Scholar 

  42. S.Y. Hou, Y.C. Zou, X.C. Liu et al., CrystEngComm 13, 835 (2011). https://doi.org/10.1039/c0ce00396d

    Article  CAS  Google Scholar 

  43. A.A. Ansari, A.K. Parchur, M. Alam, J. Labis, A. Azzeer, J. Fluoresc. 24, 1253 (2014). https://doi.org/10.1007/s10895-014-1409-9

    Article  CAS  Google Scholar 

  44. A.A. Ansari, A.K. Parchur, M. Alam, A. Azzeer, Mater. Chem. Phys. 147, 715 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.011

    Article  CAS  Google Scholar 

  45. A.A. Ansari, J.P. Labis, J. Mater. Chem. 22, 16649 (2012). https://doi.org/10.1039/c2jm33583b

    Article  CAS  Google Scholar 

  46. A.A. Ansari, M.A. Siddiqui, A. Khan, N. Ahmad, A.A. Al-Khedhairy, Colloids Surf. A 607, 125511 (2020). https://doi.org/10.1016/j.colsurfa.2020.125511

    Article  CAS  Google Scholar 

  47. A.A. Ansari, A.K. Parchur, M. Alam, A. Azzeer, Spectrochim. Acta A 131, 30 (2014). https://doi.org/10.1016/j.saa.2014.04.036

    Article  CAS  Google Scholar 

  48. V. Agrawal, E. Singla, P.K. Agnihotri, J. Mater. Sci. 33, 21935 (2022). https://doi.org/10.1007/s10854-022-08982-4

    Article  CAS  Google Scholar 

  49. A.A. Ansari, S.P. Singh, B.D. Malhotra, J. Alloys Compd. 509, 262 (2011). https://doi.org/10.1016/j.jallcom.2010.07.009

    Article  CAS  Google Scholar 

  50. J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  51. B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh, S.B. Rai, Dalton Trans. 43, 4779 (2014). https://doi.org/10.1039/c3dt53408a

    Article  CAS  Google Scholar 

  52. V. Janakiraman, V. Tamilnayagam, R.S. Sundararajan, S. Suresh, C.S. Biju, J. Mater. Sci. 31, 15477 (2020). https://doi.org/10.1007/s10854-020-04110-2

    Article  CAS  Google Scholar 

  53. V. Janakiraman, V. Tamilnayagam, R.S. Sundararajan, S. Suresh, C.S. Biju, J. Mater. Sci. 32, 9244 (2021). https://doi.org/10.1007/s10854-021-05589-z

    Article  CAS  Google Scholar 

  54. H. Hu, Z.G. Chen, T.Y. Cao et al., Nanotechnology 19(2008). https://doi.org/10.1088/0957-4484/19/37/375702

    Article  CAS  Google Scholar 

  55. A.H. Li, M.Y. Lu, J. Yang, L. Chen, X.H. Cui, Z.J. Sun, Dalton Trans. 45, 5800 (2016). https://doi.org/10.1039/c6dt00237d

    Article  Google Scholar 

  56. X.F. Wang, Y.Y. Bu, Y. Xiao, C.X. Kan, D. Lu, X.H. Yan, J. Mater. Chem. C 1, 3158 (2013). https://doi.org/10.1039/c3tc00669g

    Article  CAS  Google Scholar 

  57. S. Ye, R.X. Hu, N. Jiang, H.Y. Wang, D.P. Wang, Dalton Trans. 44, 15583 (2015). https://doi.org/10.1039/c5dt01552a

    Article  CAS  Google Scholar 

Download references

Funding

This laboratory research work is supported by the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-266-1).

Author information

Authors and Affiliations

Authors

Contributions

AAA: Conceptualization, Methodology, Investigation, Resources, Writing—original draft, Writing—review & editing, Supervision, Project administration, and Funding acquisition. MAMK: Formal analysis and Data curation.

Corresponding author

Correspondence to Anees A. Ansari.

Ethics declarations

Competing interest

The authors do not have any competing or financial interest in the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Khan, M.A.M., Singh, B.P. et al. Upconversion nanoparticles: influence of the host lattices on crystallographic and luminescent properties. J Mater Sci: Mater Electron 34, 1625 (2023). https://doi.org/10.1007/s10854-023-11027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11027-z

Navigation