Skip to main content
Log in

Functionalized MWCNT-integrated natural clay nanosystem: a promising eco-friendly capacitor for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study delves into the structural and morphological characteristics of MWCNT-doped natural kaolinite nano clays, leading to significant changes in their electrical and electrochemical properties through the doping processes. Specifically, MWCNT has been doped using two different methods, resulting in distinct physicochemical properties. In one approach, a chemical route has been employed to modify the surface of MWCNT and kaolinite, creating an alignment that forms “micro capacitors” with enhanced electrical polarizability. Conversely, the uncontrolled growth of the nanocomposite results in a random arrangement, exhibiting lower charge storage efficiency. The characterization of naturally formed kaolinite and its conjugated counterparts have been investigated via conventional characterization tools like XRD, FESEM, TEM, EDS, Zeta, etc. The XRD refinement has been adopted to investigate the microstructural evaluation of the nanocomposites by the MAUD software package. The findings indicate that natural kaolinite-MWCNT nanocomposite shows promise as a “green alternative” and has the potential to replace conventional storage materials effectively if appropriately refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data and codes will be available on reasonable request.

References

  1. S.V. Venkatesan, A. Nandy, K. Karan, S.R. Larter, V. Thangadurai, Electrochem. Energy Rev. 5, 16 (2022)

    Article  CAS  Google Scholar 

  2. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrogen Energy 47, 14319 (2022)

    Article  CAS  Google Scholar 

  3. H. Wang, D. Tran, J. Qian, F. Ding, D. Losic, Adv. Mater. Interfaces 6, 1900915 (2019)

    Article  CAS  Google Scholar 

  4. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S.R. Yousefi, M. Salavati-Niasari, Arabian J. Chem. 16, 104579 (2023)

    Article  CAS  Google Scholar 

  5. G. Khandelwal, T. Minocha, S.K. Yadav, A. Chandrasekhar, N.P. Maria, S.C. Joseph Raj, Gupta, S.J. Kim, Nano Energy 65, 104016 (2019)

    Article  CAS  Google Scholar 

  6. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  7. H. Pálková, M. Barlog, J. Madejová, V. Hronský, L. Petra, E. Šimon, P. Billik, M. Zimowska, Appl. Clay Sci. 213, 106214 (2021)

    Article  Google Scholar 

  8. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. 27, 1244 (2016)

    CAS  Google Scholar 

  9. T.T. Zhu, C.H. Zhou, F.B. Kabwe, Q.Q. Wu, C.S. Li, J.R. Zhang, Appl. Clay Sci. 169, 48 (2019)

    Article  CAS  Google Scholar 

  10. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11, 11500 (2021)

    Article  CAS  Google Scholar 

  11. M.S. Morsy, H. Shoukry, M.M. Mokhtar, A.M. Ali, S.A. El-Khodary, Constr. Build. Mater. 172, 243 (2018)

    Article  CAS  Google Scholar 

  12. K. Ke, V. Solouki Bonab, D. Yuan, I. Manas-Zloczower, Carbon 139, 52 (2018)

    Article  CAS  Google Scholar 

  13. A.K. Choudhary, H. Pramanik, Int. J. Hydrogen Energy 45, 13300 (2020)

    Article  CAS  Google Scholar 

  14. D. Mondal, S. Bardhan, N. Das, J. Roy, S. Ghosh, A. Maity, S. Roy, R. Basu, S. Das, Nano Energy 104, 107893 (2022)

    Article  CAS  Google Scholar 

  15. S. Kouser, A. Prabhu, S. Sheik, K. Prashantha, G.K. Nagaraja, J. Neetha, K.M. D’souza, Navada, D.J. Manasa, Appl. Surf. Sci. Adv. 6, 100158 (2021)

    Article  Google Scholar 

  16. A. Guevara-Morales, A.C. Taylor, J. Mater. Sci. 49, 1574 (2014)

    Article  CAS  Google Scholar 

  17. S. Lokanatha, S. Bhattacherjee, Trans. Indian Ceram. Soc. 45, 41 (1986)

    Article  CAS  Google Scholar 

  18. N.M. Kuznetsov, V.G. Shevchenko, D.Y. Stolyarova, S.A. Ozerin, S.I. Belousov, S.N. Chvalun, J. Appl. Polym. Sci. 135, 46614 (2018)

    Article  Google Scholar 

  19. V.J. da Silva, E.P. de Almeida, W.P. Gonçalves, R.B. da Nóbrega, G. de Neves, H. de Lira, R.R. Menezes, L.N. de Lima Santana, Ceram. Int. 45, 4692 (2019)

    Article  Google Scholar 

  20. J. Zhang, M.B. Clennell, M. Josh, M. Pervukhina, Appl. Clay Sci. 198, 105840 (2020)

    Article  CAS  Google Scholar 

  21. K. Kułacz, J. Waliszewski, S. Bai, L. Ren, H. Niu, K. Orzechowski, Appl. Clay Sci. 202, 105952 (2021)

    Article  Google Scholar 

  22. N. Anwar, M. Ishtiaq, A. Shakoor, N.A. Niaz, T.Z. Rizvi, M. Qasim, M. Irfan, A. Mahmood, Polym. Polym. Compos. 29, 807 (2021)

    CAS  Google Scholar 

  23. H. Kabir, M.J. Khan, G. Brodie, D. Gupta, A. Pang, M.V. Jacob, E. Antunes, J. Microw. Power Electromagn. Energy 54, 3 (2020)

    Article  Google Scholar 

  24. G. Jonathan, E. Wilson, O. Toyese, A. AMEH, I. MADUFOR, T. BELLO, Eur. J. Mater. Sci. Eng. 6, 19 (2021)

    Google Scholar 

  25. C.V. Chanmal, S.S. Bandgar, C.D. Mungamode, S.D. Chavan, S.G. Pawar, R.N. Mulik, V.L. Mathe, J.P. Jog, Macromol. Symp. 400, 1547 (2021)

    Article  Google Scholar 

  26. M.M. Filyak, A.G. Chetverikova, O.N. Kanygina, Glass Ceram.  78, 458 (2022)

    Article  CAS  Google Scholar 

  27. X. Gao, X. Feng, D. Zhang, J. Zhang, Y. Peng, Z. Pan, Z. Dai, Int. J. Appl. Ceram. Technol. (2022). https://doi.org/10.1111/ijac.14486

    Article  Google Scholar 

  28. D. Wang, H. Wang, S. Larsson, M. Benzerzour, W. Maherzi, M. Amar, Constr. Build. Mater. 241, 118085 (2020)

    Article  CAS  Google Scholar 

  29. J.D. Raja Selvam, I. Dinaharan, S. Vibin, Philip, P.M. Mashinini, J. Alloys Compd. 740, 529 (2018)

    Article  Google Scholar 

  30. R.L. Frost, J. Kristof, E. Horvath, J.T. Kloprogge, Thermochim. Acta 327, 155 (1999)

    Article  CAS  Google Scholar 

  31. S. Patil, A. Sandberg, E. Heckert, W. Self, S. Seal, Biomaterials 28, 4600 (2007)

    Article  CAS  Google Scholar 

  32. S. Roy, S. Bardhan, D.K. Chanda, J. Roy, D. Mondal, S. Das, ACS Appl. Mater. Interfaces 12, 43833 (2020)

    Article  CAS  Google Scholar 

  33. Y. Chen, Z. Hu, Y. Xu, J. Wang, P. Schützendübe, Y. Huang, Y. Liu, Z. Wang, J. Mater. Sci. Technol. 35, 512 (2019)

    Article  CAS  Google Scholar 

  34. P.P. Seth, N. Singh, M. Singh, O. Prakash, D. Kumar, J. Alloys Compd. 821, 153205 (2020)

    Article  CAS  Google Scholar 

  35. P.C. Lopes, F.A. Dias, L.R.D. Da Silva, Mater. Lett. 57, 3397 (2003)

    Article  CAS  Google Scholar 

  36. L. Zhang, C. Wang, Z. Fei Yan, X. Wu, Y. Qian Wang, D. Meng, H. Xie, Appl. Clay Sci. 86, 106 (2013)

    Article  CAS  Google Scholar 

  37. M.B. Moraes, L. Cividanes, G. Thim, J. Aerosp. Technol. Manage. (2018). https://doi.org/10.5028/jatm.v10.944

    Article  Google Scholar 

  38. D. Kapush, S.V. Ushakov, A. Navrotsky, Q.J. Hong, H. Liu, A. van de Walle, Acta Mater. 124, 204 (2017)

    Article  CAS  Google Scholar 

  39. J. Schmitt, H.C. Flemming, Int. Biodeterior. Biodegrad. 41, 1 (1998)

    Article  CAS  Google Scholar 

  40. K. Jiao, S. Yao, C. Liu, Y. Gao, H. Wu, M. Li, Z. Tang, Int. J. Coal Geol. 128–129, 1 (2014)

    Article  Google Scholar 

  41. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Mater. Des. 86, 797 (2015)

    Article  CAS  Google Scholar 

  42. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)

    Article  CAS  Google Scholar 

  43. S. Das, D. Mondal, S. Bardhan, S. Roy, D.K. Chanda, A. Maity, S. Dutta, K. Mukherjee, K. Das, J. Mater. Sci. 33, 7119 (2022)

    CAS  Google Scholar 

  44. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, J. Alloys Compd 464, 361 (2008)

    Article  CAS  Google Scholar 

  45. M. Humbert, B. Petit, B. Bolle, N. Gey, Mater. Sci. Eng. A454–455, 508 (2007)

    Article  Google Scholar 

  46. S. Ghosh, S. Roy, S. Bardhan, N. Khatua, B. Bhowal, D.K. Chanda, S. Das, D. Mondal, R. Basu, S. Das, J. Electron. Mater. 50, 3836 (2021)

    Article  CAS  Google Scholar 

  47. S. Bardhan, S. Roy, D.K. Chanda, S. Das, K. Pal, A. Chakraborty, R. Basu, S. Das, Cryst. Growth Des. 19, 4588 (2019)

    Article  CAS  Google Scholar 

  48. T. Piasecki, K. Chabowski, K. Nitsch, Measurement 91, 155 (2016)

    Article  Google Scholar 

  49. Y. Zeng, C. Xiong, W. Li, S. Rao, G. Du, Z. Fan, N. Chen, J. Alloys Compd. 905, 164172 (2022)

    Article  CAS  Google Scholar 

  50. T.M. Meaz, S.M. Attia, A.A. EL Ata, J. Magn. Magn. Mater. 257, 296 (2003)

    Article  CAS  Google Scholar 

  51. M. Nofar, R. Salehiyan, S.S. Ray, Compos. B Eng. 215, 108845 (2021)

    Article  CAS  Google Scholar 

  52. J.W. Steeds, A. Gilmore, K.M. Bussmann, J.E. Butler, P. Koidl, Diam. Relat. Mater. 8, 996 (1999)

    Article  CAS  Google Scholar 

  53. M. Kumar, S. Shankar, S. Brijmohan, O.P. Kumar, Thakur, A.K. Ghosh, Phys. Lett. A 381, 379 (2017)

    Article  CAS  Google Scholar 

  54. C.E. Hori, H. Permana, K.Y.S. Ng, A. Brenner, K. More, K.M. Rahmoeller, D. Belton, Appl. Catal. B 16, 105 (1998)

    Article  CAS  Google Scholar 

  55. G. Grüner, A. Zettl, Phys. Rep. 119, 117 (1985)

    Article  Google Scholar 

  56. A. El Bachiri, M. El Hasnaoui, A. Louardi, A. Narjis, F. Bennani, Phys. B Condens Matter 571, 181 (2019)

    Article  Google Scholar 

  57. C.Y. Tan, N.K. Farhana, N.M. Saidi, S. Ramesh, K. Ramesh, Org. Electron. 56, 116 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics, Jadavpur University, for extending experimental facilities. S.D. and D.M would like to acknowledge UGC-DAE-CSR (Grant No. CRS/2021-22/02/498), and J.R and R.B acknowledges UGC-DAE-CSR (Grant No. CRS/2021-22/02/514) for funding.

Funding

UGC-DAE Consortium for Scientific Research, India (Grant No. CRS/2021-22/02/498 and CRS/2021-22/02/514).

Author information

Authors and Affiliations

Authors

Contributions

DM: conceptualization, data curation, computation, writing of the original draft. AS: data curation. SR: conceptualization, investigation, computation. SB: conceptualization, investigation. JR: data curation, computation. SG: data curation. RB: investigation, funding. SS: investigation. SD: investigation, funding.

Corresponding author

Correspondence to Sukhen Das.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 749.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, D., Sau, A., Roy, S. et al. Functionalized MWCNT-integrated natural clay nanosystem: a promising eco-friendly capacitor for energy storage applications. J Mater Sci: Mater Electron 34, 1597 (2023). https://doi.org/10.1007/s10854-023-11007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11007-3

Navigation