Skip to main content
Log in

Enhancing the thermoelectric performance of MgAgSb-based materials with heavy Zn-doped

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The low intrinsic thermal conductivity, low cost, abundant element reserves, and superior mechanical qualities of MgAgSb-based near-room-temperature thermoelectric materials will eventually replace Bi2Te3-based materials. However, MgAgSb-based materials suffer from impurities that are caused by complicated phase transitions that reduce their thermoelectric properties. To create heavy Zn-doping MgAgSb-based materials, two-step differential ball milling and stoichiometric ratio regulation are used in this study. The second phases, pores, and some new phonon scattering centers are also provided by this technique, which leads to a low thermal conductivity of 0.8 W m−1 K−1. Meanwhile, significant Zn doping also optimizes the electrical properties. Finally, a doping level of 8% allows for a maximum zT value of 0.9 at 473 K. This strategy provides a straightforward solution without a lengthy annealing process. This technique encourages the use of MgAgSb-based products for commercial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available based on reasonable request.

References

  1. X.-L. Shi, C. Wen-Yi, Z. Ting et al., Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ. Sci. 14, 729–764 (2021)

    Article  CAS  Google Scholar 

  2. G. Tan, M. Ohta, M.G. Kanatzidis, Thermoelectric power generation: from new materials to devices. Philos. Trans. Royal Soc. A 377, 20180450 (2019)

    Article  CAS  Google Scholar 

  3. P. Ying, R. He, J. Mao et al., Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat. Commun. 12, 1121 (2021)

    Article  CAS  Google Scholar 

  4. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  5. G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

    Article  CAS  Google Scholar 

  6. X.-L. Shi, Z. Jin, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020)

    Article  CAS  Google Scholar 

  7. J. Cai, J. Yang, G. Liu et al., Boosting the thermoelectric performance of PbSe from the band convergence driven by spin-orbit coupling. Adv. Energy Mater. 12, 2103287 (2022)

    Article  CAS  Google Scholar 

  8. Z. Chen, Z. Jian, W. Li et al., Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 29, 1606768 (2017)

    Article  Google Scholar 

  9. S. Guo, S. Anand, M.K. Brod, Y. Zhang, G.J. Snyder, Conduction band engineering of half-heusler thermoelectrics using orbital chemistry. J. Mater. Chem. A 10, 3051–3057 (2022)

    Article  CAS  Google Scholar 

  10. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyde, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008)

    Article  CAS  Google Scholar 

  11. S. Li, L. Yu, C. Qi et al., Different effects of mg and Si doping on the thermal transport of gallium nitride. Front. Mater. (2021). https://doi.org/10.3389/fmats.2021.725219

    Article  Google Scholar 

  12. K. Biswas, J. He et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012)

    Article  CAS  Google Scholar 

  13. K. Biswas, J. He, Q. Jang et al., Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011)

    Article  CAS  Google Scholar 

  14. J. Lei, D. Zhang, W. Guan et al., Enhancement of thermoelectric figure of merit by the insertion of multi-walled carbon nanotubes in α-MgAgSb. Appl. Phys. Lett.  (2018). https://doi.org/10.1063/1.5042265

    Article  Google Scholar 

  15. B. Jabar, F. Li, Z. Zheng et al., Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2-Pnnm Bi2SeS2 with high thermoelectric performance. Nat. Commun. 12, 7192 (2021)

    Article  CAS  Google Scholar 

  16. J. Xin, J. Yang et al., Thermoelectric performance of rapidly microwave-synthesized α-MgAgSb with SnTe nanoinclusions. Chem. Mater. 31, 2421–2430 (2019)

    Article  CAS  Google Scholar 

  17. M.J. Kirkham, A.M. dos Santos, C.J. Rawn et al., Abinitio determination of crystal structures of the thermoelectric material MgAgSb. Phys. Rev. B 85, 144120 (2012)

    Article  Google Scholar 

  18. M. Noroozi, G. Jayakumar, K. Zahmatkesh et al., Unprecedented thermoelectric power factor in SiGe nanowires field-effect transistors. ECS J. Solid State Sci. Technol. 6, Q114 (2017)

    Article  CAS  Google Scholar 

  19. J. Lei, D. Zhang, W. Guan et al., Engineering electrical transport in α-MgAgSb to realize high performances near room temperature. Phys. Chem. Chem. Phys. 20, 16729–16735 (2018)

    Article  CAS  Google Scholar 

  20. H. Zhao, J. Sui, Z. Tang et al., High thermoelectric performance of MgAgSb-based materials. Nano Energy 7, 97–103 (2014)

    Article  CAS  Google Scholar 

  21. J. Sui, J. Shurai, Y. Lan et al., Effect of Cu concentration on thermoelectric properties of nanostructured p-type MgAg0.97–xCuxSb0.99. Acta Mater. 87, 266–272 (2015)

    Article  CAS  Google Scholar 

  22. J. Shuai, H.S. KIm, Y. Lang et al., Study on thermoelectric performance by na doping in nanostructured Mg1-xNaxAg0.97Sb0.99. Nano Energy 11, 640–646 (2015)

    Article  CAS  Google Scholar 

  23. Z. Liu, Y. Wang, J. Mao et al., Lithium doping to enhance thermoelectric performance of MgAgSb with weak electron-phonon coupling. Adv. Energy Mater. 6, 1502269 (2016)

    Article  Google Scholar 

  24. Y. Liu, D.Z. Zhou, Y.Q. Li et al., Unusual consequences of donor and acceptor doping on the thermoelectric properties of the MgAg0.97Sb0.99 alloy. J. Mater. Chem. A 6, 2600–2611 (2018)

    Article  CAS  Google Scholar 

  25. P. Ying, X. Liu, C. Fu et al., High performance α-MgAgSb thermoelectric materials for low temperature power generation. Chem. Mater. 27, 909–913 (2015)

    Article  CAS  Google Scholar 

  26. W. Gao, X. Yi, B. Cui et al., The critical role of boron doping in the thermoelectric and mechanical properties of nanostructured α-MgAgSb. J. Mater. Chem. C 6, 9821–9827 (2018)

    Article  CAS  Google Scholar 

  27. Z. Liu, Y. Zang, J. Mao et al., The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. Acta Mater. 128, 227–234 (2017)

    Article  CAS  Google Scholar 

  28. Z. Liu, Y. Wang, W. Gao et al., The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb. Nano Energy 31, 194–200 (2017)

    Article  CAS  Google Scholar 

  29. T. Zhang, B. Dong, X. Wang, Optimization of the thermoelectric performance of α-MgAgSb-based materials by Zn-doping. J. Mater. Sci. 56, 13715–13722 (2021)

    Article  CAS  Google Scholar 

  30. Y. Zheng, C. Liu, L. Miao et al., Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Adv. 8, 35353–35359 (2018)

    Article  CAS  Google Scholar 

  31. T. Xiaojian, W. Ling, S. Hezhu et al., Improving thermoelectric performance of α-MgAgSb by theoretical band engineering design. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700076

    Article  Google Scholar 

  32. Y. Zheng, C. Liu, L. Miao et al., Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy 59, 311–320 (2019)

    Article  CAS  Google Scholar 

  33. Z. Feng, J. Zhang, Y. Yan et al., Ag-Mg antisite defect induced high thermoelectric performance of α-MgAgSb. Sci. Rep. 7, 2572 (2017)

    Article  Google Scholar 

  34. R.-B. Ignacio, C. Julia, L. Laura et al., On the influence of AgMg precursor formation on MgAgSb microstructure and thermoelectric properties. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158384

    Article  Google Scholar 

  35. C. Hu, K. Xia, X. Chen et al., Transport mechanisms and property optimization of p-type (zr, Hf)CoSb half-heusler thermoelectric materials. Mater. Today Phys. 7, 69–76 (2018)

    Article  Google Scholar 

  36. X. Liu, Y. Wang, J.O. Sofo et al., First-principles studies of lattice dynamics and thermal properties of Mg2Si1– xSnx. J. Mater. Res. 30, 2578–2584 (2015)

    Article  CAS  Google Scholar 

  37. K. Kurosaki, A. Kosuga, H. Muta et al., Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005)

    Article  Google Scholar 

  38. D.S. Sanditov, V.N. Belomestnykh, Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys. 56, 1619–1623 (2011)

    Article  CAS  Google Scholar 

  39. O. Delaire, A.F. May, M.A. McGuire et al., Phonon density of states and heat capacity of La3−xTe4. Phys. Rev. B 80, 184302 (2009)

    Article  Google Scholar 

  40. P. Ying, X. Li, J. Wang et al., Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Adv. Funct. Mater. 27, 1604145 (2017)

    Article  Google Scholar 

  41. A.F. May, E.S. Toberer, A. Saramat et al., Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x. Phys. Rev. B 80, 125205 (2009)

    Article  Google Scholar 

  42. X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379–415 (2016)

    Article  CAS  Google Scholar 

  43. J. Shen, Z. Chen et al., Single parabolic band behavior of thermoelectric p-type CuGaTe2. J. Mater. Chem. 4, 209–214 (2016)

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China [Grant Number 52177159], the Natural Science Foundation of Shaanxi Province [Grant Number 2021GXLH-Z-089], and the State Key Laboratory of Electrical Insulation and Power Equipment [Grant Number EIPE23305].

Author information

Authors and Affiliations

Authors

Contributions

TX, YZ study conceptualization and writing (original draft) the manuscript. YW, HH, CN, MR data curation, formal analysis and writing (review & editing), and funding acquisition and project administration.

Corresponding author

Correspondence to Hailong He.

Ethics declarations

Conflict of interest

There is no conflict of interest by any author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, T., He, H., Zhang, Y. et al. Enhancing the thermoelectric performance of MgAgSb-based materials with heavy Zn-doped. J Mater Sci: Mater Electron 34, 1632 (2023). https://doi.org/10.1007/s10854-023-11006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11006-4

Navigation