Skip to main content

Advertisement

Log in

Havriliak-Negami and Bergman type of dielectric response, together with Dyre’s Hopping tunneling through random free energy barriers in (BiFeO3)0.8—(CaTiO3)0.2 distorted crystalline structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An inter hexagonal species structural phase transformation from R3c to R3cH was found while doping BFO with 20% concentration of (CaTiO3), which manifests itself as distorted trigonal symmetry. The XPS analysis reveals dual oxidation states (Fe2+ & Fe3+) of the Fe2p3/2 state when deconvoluted. The existence of dominating Oads is also confirmed, thereby giving a helping hand toward hopping and double exchange mechanisms. The permittivity curves followed both symmetric and asymmetric dispersion of relaxation mechanisms, which is best fitted by the Havriliak-Negami functions. The decrement of dielectric relaxation times with thermal energy validates the possibility of temperature-mediated induced entropies and phase lags of dipolar moments. The modulus dispersions curves were fitted following R. Bergman’s formalism, which showed that the dielectric relaxations can be explained as a sum of some Kohlrausch-Williams-Watt \(\beta_{KWW}\) stretched exponents. The extracted numerics of \(\beta_{KWW}\) parameters proved the upper hand of dipolar interactions toward polarizability. The possibility of wider grain wall formation is also validated by it. The ferroelectric and magnetic studies revealed enhancement in the suppression of ferroelectric leakages relative to the parent composite and improved opening of M-H loops, reinforced by enhanced DM hamiltonian interactions due to structural bending and elongation in the double exchange interaction chain, together with the G-type antiferromagnetic phase of the host. The conductivity data fitting was performed by incorporating Dyre’s RFEBM(Random Free Energy Barrier Model) model, where conductivity was verified to be following the mechanisms of hopping jumps through an extended range of free energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data acquired in the current study shall be made available on reasonable request.

References:

  1. Kubel, F., Schmid, H. Acta Crystallographica Section B 46, 698–702 (1990) https://doi.org/10.1107/S0108768190006887.

  2. Christian Michel, Jean-Michel Moreau, Gary D. Achenbach, Robert Gerson, W.J. James, (1969) The atomic structure of BiFeO3, Solid State Commun., doi: https://doi.org/10.1016/0038-1098(69)90597-3.

  3. James R. Teague, Robert Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3, Solid State Communications, Volume 8, Issue 13, 1970, Pp. 1073–1074, https://doi.org/10.1016/0038-1098(70)90262-0.

  4. Balesh Kumar Vashisth, Jarnail S. Bangruwa, Anu Beniwal, S.P. Gairola, Ashok Kumar, Nidhi Singh, Vivek Verma, Modified ferroelectric/magnetic and leakage current density properties of Co and Sm co-doped bismuth ferrites, Journal of Alloys and Compounds, Volume 698, 2017, Pp. 699–705, https://doi.org/10.1016/j.jallcom.2016.12.278.

  5. Yoshihiro Takahashi, Kousuke Meguro, Hiroshi Naganuma, Nobuaki Terakado, Takumi Fujiwara .Multiferroic BiFeO3 glass-ceramics: Phase formation and physical property Appl. Phys. Lett. 104, 221901 (2014) https://doi.org/10.1063/1.4881138.

  6. L. Bai, M. Sun, W. Ma, J. Yang, J. Zhang, Y. Liu, Enhanced magnetic properties of Co-Doped BiFeO3 thin films via structural progression. Nanomaterials (Basel). 10(9), 1798 (2020). https://doi.org/10.3390/nano10091798

    Article  CAS  Google Scholar 

  7. Yanhong Gu, Yan Zhou, et al. Optical and magnetic properties of Smdoped BiFeO3 nanoparticles around the morphotropic phase boundary region, AIP Advances 11, 045223 (2021); https://doi.org/10.1063/5.0042485

  8. Jason A. Schiemer, Ray L. Withers, Yun Liu, Michael A. Carpenter, Ca-Doping of BiFeO3: The Role of Strain in Determining Coupling between Ferroelectric Displacements, Magnetic Moments, Octahedral Tilting, and Oxygen-Vacancy Ordering, Chem. Mater. 2013, 25, 21, 4436–4446, 2013 https://doi.org/10.1021/cm402962q

  9. Xia-Li Liang, Jian-Qing Dai, Prominent ferroelectric properties in Mn-doped BiFeO3 spin-coated thin films, Journal of Alloys and Compounds, Volume 886, 2021, 161168, https://doi.org/10.1016/j.jallcom.2021.161168.

  10. Rajasree Das, Gobinda Gopal Khan, Kalyan Mandal, Pr, and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material EPJ Web of Conferences 40, 15015(2013) https://doi.org/10.1051/epjconf/20134015015

  11. Taisan, N.A.; Kumar, S.; Alshoaibi, A. Structural, Electrical and Optical Properties of TM (Mn and Cr) Doped BiFeO3 Nanoparticles, Crystals 2022, 12, 1610. https:// doi.org/https://doi.org/10.3390/cryst12111610

  12. Priya, A.S.; Geetha, D.; Siqueiros, J.M.; T alu, S, Molecules 2022, 27, 7565.

  13. C M Gokul, Aiswarya Mohan, Soumya G Nair, S R Dhanya, Jyotirmayee Satapathy, Structural, morphological and thermal analysis of pure and doped (Ho/Nd)-BFO multiferroics, 2021, J. Phys.: Conf. Ser. Doi: https://doi.org/10.1088/1742-6596/2070/1/012008

  14. V. Kumar, S. Singh, Optical and magnetic properties of (1–x)BiFeO3-xCaTiO3 nanoparticles. J. Alloy. Compd. 732, 350–357 (2018). https://doi.org/10.1016/j.jallcom.2017.10.236

    Article  CAS  Google Scholar 

  15. Gomasu Sreenu, Subhadeep Saha, R. N. Bhowmik, J. P. Praveen, Dibakar Das, (2022) J. Mater. Sci. Mater. Electron. 33, 24959

  16. S. Gupta, M. Tomar, V. Gupta, Study on Mn-induced Jahn-Teller distortion in BiFeO3 thin films. J. Mater. Sci. 49, 5997–6006 (2014). https://doi.org/10.1007/s10853-014-8318-9

    Article  CAS  Google Scholar 

  17. Kartopu G, Lahmar A, Habouti S (2008) Observation of structural transitions and Jahn–Teller distortion in LaMnO3-doped BiFeO3 thin films. Appl Phys Lett 92:151910(1)–151910(3)

  18. Muhammad Safwan Sazali, Muhamad Kamil Yaakob, Zakiah Mohamed, Mohamad Hafiz Mamat, Oskar Hasdinor Hassan, Noor Haida Mohd Kaus, Muhd Zu Azhan Yahya, Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO3: Effects on structural, magnetic and optical properties, Results in Physics, 15, 2019, 102740, https://doi.org/10.1016/j.rinp.2019.102740.

  19. S. Wu, J. Zhang, X. Liu, S. Lv, R. Gao, W. Cai, F. Wang, C. Fu, Nanomaterials 9(2), 190 (2019). https://doi.org/10.3390/nano9020190

    Article  CAS  Google Scholar 

  20. S. Godara, N. Sinha, G. Ray, B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J. Asian Ceram. Soc. 2(4), 416–421 (2014). https://doi.org/10.1016/j.jascer.2014.09.001

    Article  Google Scholar 

  21. Rozhin Irandoust, Ahmad Gholizadeh, A comparative study of the effect of the non-magnetic and magnetic trivalent rare-earth ion substitutions on bismuth ferrite properties: Correlation between the crystal structure and physical properties, Solid State Sciences, 101, 2020, 106142, https://doi.org/10.1016/j.solidstatesciences.2020.106142.

  22. Santanu Sen, A. Mondal, R.K. Parida, B.N. Parida, Inorg. Chem. Commun, 2022, doi: https://doi.org/10.1016/j.inoche.2022.109664.

  23. S. Sen, R.K. Parida, B.N. Parida, Improved multifunctional features in BiFeO3 solid solution due to partial substitution of MgTiO3. Appl. Phys. A 128, 1054 (2022). https://doi.org/10.1007/s00339-022-06116-5

    Article  CAS  Google Scholar 

  24. Pavana S. V. Mocherla, C. Karthik, R. Ubic, M. S. Ramachandra Rao, C. Sudakar (2013) Appl. Phys. Lett. ; https://doi.org/10.1063/1.4813539.

  25. K. Górska, A. Horzela, Ł Bratek, G. Dattoli, K.A. Penson, J. Phys. A: Math. Theor. 51, 135202 (2018). https://doi.org/10.1088/1751-8121/aaafc0

    Article  Google Scholar 

  26. Volkov, A.S., Koposov, G.D., Perfil’ev, R.O. et al. Analysis of experimental results by the Havriliak–Negami model in dielectric spectroscopy, Opt. Spectrosc. 124, 202–205 (2018). https://doi.org/10.1134/S0030400X18020200

  27. Yu. I. Yurasov, A. V. Nazarenko Parameter of dielectric loss distribution in the new model for complex conductivity based on Havriliak–Negami formula, (2020), journal of advanced dielectrics Vol. 10, Nos. 1 & 2 2060006 (8 pages) DOI: https://doi.org/10.1142/S2010135X20600061

  28. R. Casalini, CM. Roland, (2003) Phys. Rev. Lett. 91 015702

  29. K. Fukao, Y. Miyamoto Glass transitions, and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene Phys. Rev. E, 2000, 61, 1743 https://doi.org/10.1103/PhysRevE.61.1743.

  30. R. Casalini, C.M. Roland, Aging of a low molecular weight poly(methyl methacrylate). J. Non-Cryst. Solids 357(2), 282–285 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.07.048

    Article  CAS  Google Scholar 

  31. F. Alvarez, A. Alegra, and J. Colmenero Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions, Phys. Rev. B (1991), 44, 7306, https://doi.org/10.1103/PhysRevB.44.7306.

  32. F. Alvarez, A. Alegría, J. Colmenero Phys. Rev. B 47, 125 (1993). https://doi.org/10.1103/PhysRevB.47.125

    Article  CAS  Google Scholar 

  33. A.A. Bokov, M. Maglione, Z.-G. Ye, J. Phys.: Condens. Matter (2007). https://doi.org/10.1088/0953-8984/19/9/092001

    Article  Google Scholar 

  34. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000). https://doi.org/10.1063/1.373824

    Article  CAS  Google Scholar 

  35. A. A. Bokov, Z.-G. Ye Double freezing of dielectric response in relaxor Pb(Mg1/3Nb2/3)O3 crystals, Phys. Rev. B (2006) 74, 132102 https://doi.org/10.1103/PhysRevB.74.132102.

  36. T. PrakashK. Padma PrasadR. Kavitha, S. Ramasamy, (2007) Journal of Applied Physics 102, 104104

  37. Santanu Sen, R.K. Parida, B.N. Parida, (2023) Phys. B Cond. Mat, doi: https://doi.org/10.1016/j.physb.2022.414559.

  38. S. Mohanty, S. Behera, Santanu Sen, B. N. Parida, Rashmi Singh, Dielectric, optical, and magnetic behaviors of magnesium iron-based double perovskite, 2022 ECS J. Solid State Sci. Technol. 11 113003, DOI https://doi.org/10.1149/2162-8777/ac9ff1.

  39. S. Mohanty, S. Sen, S. Behera et al., J. Mater. Sci: Mater. Electron. 33, 23770–23780 (2022). https://doi.org/10.1007/s10854-022-09135-3

    Article  CAS  Google Scholar 

  40. Sonali Saha and T. P. Sinha Low-temperature scaling behavior of BaFe0.5Nb0.5O3 Phys. Rev. B(2002) 65, 134103.

  41. K.P. Padmasree, D.K. Kanchan, A.R. Kulkarni, Solid State Ionics (2006). https://doi.org/10.1016/j.ssi.2005.12.019

    Article  Google Scholar 

  42. Y. Barsukov, J.R. Macdonald, Electrochemical impedance spectroscopy. Charact. Mater. (2012). https://doi.org/10.1002/0471266965.com124

    Article  Google Scholar 

  43. C. Ruttanapun, S. Maensiri, J. Phys. D Appl. Phys. 48, 495103 (2015). https://doi.org/10.1088/0022-3727/48/49/495103

    Article  CAS  Google Scholar 

  44. J. Morales, L. Saánchez, F. Martiín, F. Berry, X. Ren, F.D.P.M. Jiménez, Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling. J. Electrochem. Soc. 152(9), A1748–A1754 (2005)

    Article  CAS  Google Scholar 

  45. W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, J. Electrochem. Sci. Technol. 11, 1–13 (2020)

    Article  CAS  Google Scholar 

  46. K. Shimakawa, Electrical Transport Properties of Glass, in Springer Handbook of Glass. (Springer, Berlin/Heidelberg, Germany, 2019), p.343

    Chapter  Google Scholar 

  47. S.S. Batool, Z. Imran, K. Rasool et al., Sci. Rep. 10, 2775 (2020). https://doi.org/10.1038/s41598-020-59563-6

    Article  CAS  Google Scholar 

  48. L. Zhang, F. Liu, K. Brinkman, K.L. Reifsnider, A.V. Virkar, A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J. Power Sources 247, 947–960 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.036

    Article  CAS  Google Scholar 

  49. Yu. Shenglong, H. Bi, J. Sun, L. Zhu, Yu. Huamin, Lu. Chunling, X. Liu, Effect of grain size on the electrical properties of strontium and magnesium doped lanthanum gallate electrolytes. J. Alloy. Compd. 777, 244–251 (2019). https://doi.org/10.1016/j.jallcom.2018.10.257

    Article  CAS  Google Scholar 

  50. C. Jeppe, Dyre The random free-energy barrier model for ac conduction in disordered solids Journal of Citation. J. Appl. Phys. 64, 2456 (1988). https://doi.org/10.1063/1.341681

    Article  Google Scholar 

  51. S. Flügge (Ed.), Handbuch der Physik, Band 20, Springer, Berlin (1957), Vol. 20, p. 350.

  52. H. E. Taylor, J. Soc. Glass Technol. 41, 3S0T (1957); ibid. 43, J24T (1959).

  53. R. Gupta, J. Shah, S. Chaudhary et al., Magnetoelectric coupling-induced anisotropy in multiferroic nanocomposite (1–x)BiFeO3–xBaTiO3. J Nanopart Res 15, 2004 (2013). https://doi.org/10.1007/s11051-013-2004-8

    Article  CAS  Google Scholar 

  54. S. Dash, R.N.P. Choudhary, P.R. Das et al., Effect of KNbO3 modification on structural, electrical and magnetic properties of BiFeO3. Appl. Phys. A 118, 1023–1031 (2015). https://doi.org/10.1007/s00339-014-8862-9

    Article  CAS  Google Scholar 

  55. Anshu Sharma, R.K. Kotnala, N.S. Negi, (2014) J. Alloys Comp., 582, 628–634, https://doi.org/10.1016/j.jallcom.2013.08.087.

  56. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics. J. Alloy. Compd. 722, 606–616 (2017). https://doi.org/10.1016/j.jallcom.2017.06.132

    Article  CAS  Google Scholar 

  57. A. Mukherjee, M. Banerjee, S. Basu, Nguyen Thi Kim Thanh, L.A.W. Green, M. Pal, (2014) Phys. B Condens Mat., 448, 199–203

  58. G. Catalan, J.F. Scott, Phys. Appli. Bismuth Ferrite (2009). https://doi.org/10.1002/adma.200802849

    Article  Google Scholar 

  59. Marzouk, Mostafa., Hashem, Hany., Soltan, Soltan., Ramadan, A. J. Mater. Sci. Mater. Electron, 2020, doi: https://doi.org/10.1007/s10854-020-03126-y.

  60. C. Ederer, N.A. Spaldin, Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.060401

    Article  Google Scholar 

  61. N. Maso, A. West, Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction. Chem. Mater Chem. Mater. 24(11), 2127–2132 (2012). https://doi.org/10.1021/cm300683e

    Article  CAS  Google Scholar 

  62. T. Moriya, Magnetism (Academic, New York, 1963)

    Google Scholar 

  63. I.E. Dzyaloshinski, J. Phys. Chem. Solids 4, 241 (1958)

    Article  Google Scholar 

  64. B. Khan, M.K. Singh, P. Yadav, A. Kumar, G. Singh, P. Kumar, Mater. Chem. Phys 290, 126642 (2022). https://doi.org/10.1016/j.matchemphys.2022.126642

    Article  CAS  Google Scholar 

  65. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, Improved structure stability and multiferroic characteristics in CaTiO3-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 95(2), 670–675 (2011). https://doi.org/10.1111/j.1551-2916.2011.04824.x

    Article  CAS  Google Scholar 

Download references

Funding

Santanu Sen reports administrative support was provided by Central Institute of Technology Kokrajhar Deemed to be University. Santanu Sen reports administrative support was provided by Central Institute of Technology Kokrajhar Deemed to be University. Santanu Sen reports a relationship with Central Institute of Technology Kokrajhar Deemed to be University that includes: non-financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: B.N. Parida, Santanu Sen. Acquisition of data: Santanu Sen, R.K. Parida. Analysis and/or interpretation of data: B.N. Parida, Santanu Sen. Drafting the manuscript: Santanu Sen, B.N. Parida. Revising the manuscript critically for important intellectual content: R.K. Parida, B.N. Parida, Santanu Sen. Approval of the version of the manuscript to be published: Santanu Sen, B.N. Parida, R.K. Parida.

Corresponding author

Correspondence to Santanu Sen.

Ethics declarations

Conflict of interest

The authors declare the following financial/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Parida, R.K. & Parida, B.N. Havriliak-Negami and Bergman type of dielectric response, together with Dyre’s Hopping tunneling through random free energy barriers in (BiFeO3)0.8—(CaTiO3)0.2 distorted crystalline structure. J Mater Sci: Mater Electron 34, 1617 (2023). https://doi.org/10.1007/s10854-023-11000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11000-w

Navigation