Skip to main content
Log in

Thermal lens study of hydrothermally synthesised graphitic carbon nitride nanofluids for heat transfer applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper discourses the need for synthesising an energy-efficient nanofluid with graphitic carbon nitride (g-C3N4) to overwhelm the difficulties of proficient heat transfer in thermal devices. The highly sensitive mode mismatched dual-beam thermal lens technique is used to analyse the concentration-dependent thermal diffusivity (D) variation of the g-C3N4 nanofluids. The g-C3N4 is green synthesised by the hydrothermal method using soya chunks as natural carbon precursors. When the structure characterisations confirm the formation of g-C3N4, its thermal stability is disclosed through thermogravimetric analysis. The radiative analyses—optical absorption and emission studies—suggest the bandgap energy to be 2.8 eV with an emission in the blue region for the excitation at 350 nm, reiterating the semiconducting of g-C3N4. The non-radiative analysis by thermal lens technique shows that the D of the nanofluid increases with an increase in g-C3N4 concentration in the base fluid till the critical concentration and beyond which it decreases. This reveals the amphoteric thermal diffusivity of g-C3N4-ethylene glycol nanofluid, opening up the possibility of developing heat transfer fluids with tailored D values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. S. U. S. Choi, Nanofluid technology: current status and future research (ANL, Argonne, USA, 1988), https://www.osti.gov/servlets/purl/11048

  2. S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology (Wiley, USA, 2005), pp.1–32

    Google Scholar 

  3. S.U.S. Choi, J.A. Eastman, Am. Soc. Mech. Eng. Fluids Eng. Div. 231, 99 (1995)

    CAS  Google Scholar 

  4. L.O. Usoltseva, M.V. Korobov, M.A. Proskurnin, J. Appl. Phys. 128, 190901 (2020)

    Article  CAS  Google Scholar 

  5. M. Awais, N. Ullah, J. Ahmad, F. Sikandar, M.M. Ehsan, S. Salehin, A.A. Bhuiyan, Int. J. Thermofluids 9, 100065 (2021)

    Article  CAS  Google Scholar 

  6. V. Gokul, M.S. Swapna, V. Raj, S. Von Gratowski, S. Sankararaman, Phys. Fluids 33, 107108 (2021)

    Article  CAS  Google Scholar 

  7. M.S. Swapna, V. Raj, H. Cabrera, S. Sankararaman, A.C.S. Appl, Nano Mater. 4, 3416 (2021)

    Google Scholar 

  8. V. Gokul, M.S. Swapna, V. Raj, H.V. Sarithadevi, S. Sankararaman, Int. J. Thermophys. 42, 1 (2021)

    Article  Google Scholar 

  9. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  CAS  Google Scholar 

  10. M. Franko, C.D. Tran, Revi. Sci. Instrum. 67, 1 (1996)

    Article  CAS  Google Scholar 

  11. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, J. Opt. Soc. Am. B 23, 1408 (2006)

    Article  CAS  Google Scholar 

  12. R. Vinodh, R. Atchudan, M. Yi, H. Kim, M. Talukdar, Pritam Deb, in Nanostructured carbon nitrides for sustainable energy and environmental applications, ed. by S. Chowdury, M. Naushad, (Matthew Deans, 2022), pp. 1–35

  13. I. M. Mostafa, F. Du, G. Xu, Q. Lu, W. Li, L. Gai, K. Eid, in Carbon nitride nanostructures for sustainable energy production and environmental remediation, ed. by K. A. M. Eid, A. M. Abdullah (Royal Society of Chemistry, Croydron, UK, 2021), pp. 38–118

  14. Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.J. Ni, Nano Res. 13, 18 (2020)

    Article  CAS  Google Scholar 

  15. S. Vinoth, K.S. Shalini Devi, A. Pandikumar, TrAC 140, 116274 (2021)

    CAS  Google Scholar 

  16. D.T. Morelli, J.P. Heremans, Appl. Phys. Lett. 81, 5126 (2002)

    Article  CAS  Google Scholar 

  17. W. Yu, H. Xie, Y. Li, L. Chen, Particuology 9, 187 (2011)

    Article  CAS  Google Scholar 

  18. I. Mateos-Aparicio, A. Redondo Cuenca, M.J. Villanueva-Suárez, M.A. Zapata-Revilla, Nutr. Hosp. 23, 305 (2008)

    CAS  Google Scholar 

  19. O.R. Etiosa, N.B. Chika, A. Benedicta, Asian J. Phys. Chem. Sci. 4, 1 (2017)

    Google Scholar 

  20. H. Li, Y. Jing, X. Ma, T. Liu, L. Yang, B. Liu, S. Yin, Y. Wei, Y. Wang, RSC Adv. 7, 8688 (2017)

    Article  CAS  Google Scholar 

  21. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  22. R.H.P. Devamani, M. Alagar, Nano Biomed. Eng. 5, 116 (2013)

    Article  Google Scholar 

  23. M. Elshafie, S.A. Younis, P. Serp, E.A.M. Gad, Egypt. J. Pet. 29, 21 (2020)

    Article  Google Scholar 

  24. C. Fan, J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, RSC Adv. 7, 37185 (2017)

    Article  CAS  Google Scholar 

  25. J. Yang, X. Wu, X. Li, Y. Liu, M. Gao, X. Liu, L. Kong, S. Yang, Appl. Phys. A: Mater. Sci. Process. 105, 161 (2011)

    Article  CAS  Google Scholar 

  26. P. Petrov, D.B. Dimitrov, D. Papadimitriou, G. Beshkov, V. Krastev, C. Georgiev, Appl. Surf. Sci. 151, 233 (1999)

    Article  CAS  Google Scholar 

  27. I. Widlow, Y.W. Chung, Int. Mater. Rev. 47, 153 (2002)

    Article  CAS  Google Scholar 

  28. N. Urakami, M. Kosaka, Y. Hashimoto, Jpn. J. Appl. Phys. 58, 10907 (2019)

    Article  Google Scholar 

  29. T.V. de Medeiros, A.O. Porto, H.A. Bicalho, J.C. González, R. Naccache, A.P.C. Teixeira, J. Mater. Chem. C 9, 7622 (2021)

    Article  Google Scholar 

  30. W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 58, 16644 (2019)

    Article  CAS  Google Scholar 

  31. J. Liu, H. Wang, M. Antonietti, Chem. Soc. Rev. 45, 2308 (2016)

    Article  CAS  Google Scholar 

  32. Y. Dong, Q. Wang, H. Wu, Y. Chen, C.H. Lu, Y. Chi, H.H. Yang, Small 12, 5376 (2016)

    Article  CAS  Google Scholar 

  33. X. Bai, C. Cao, X. Xu, Mater. Sci. Eng. B: Solid State Mater. Adv. Technol. 175, 95 (2010)

    Article  CAS  Google Scholar 

  34. R. Sebastian, M.S. Swapna, V. Raj, M. Hari, S. Sankararaman, Mater. Res. Express 5, 075001 (2018)

    Article  Google Scholar 

  35. M.S. Swapna, S. Sankararaman, J. Phys. Chem. C 123, 23264 (2019)

    Article  Google Scholar 

  36. K. Aryana, J.T. Gaskins, J. Nag, J.C. Read, D.H. Olson, M.K. Grobis, P.E. Hopkins, Appl. Phys. Lett. 116, 043502 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledging Central Laboratory for Instrumentation and Facilitation (CLIF), University of Kerala, Trivandrum, 695581, India, for providing an instrumentation facility.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Methodology: VG; Software: VG; Validation: MNSS and SIS; Formal analysis: VG, MNSS and SIS; Writing-original draft: VG; Writing-review and editing: MNSS, GA, and SIS; Supervision: GA and SIS. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sankaranarayana Iyer Sankararaman.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokul, V., Swapna, M.N.S., Ambadas, G. et al. Thermal lens study of hydrothermally synthesised graphitic carbon nitride nanofluids for heat transfer applications. J Mater Sci: Mater Electron 34, 1575 (2023). https://doi.org/10.1007/s10854-023-10991-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10991-w

Navigation