Skip to main content
Log in

Investigation of anisotropic textured crystalline silicon surface passivation with intrinsic amorphous silicon layers: role of annealing pressure conditions during passivation recovery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the surface passivation recovery by post-deposition annealing in a vacuum and at different pressure conditions of the a-Si:H/c-Si/a-Si:H. Gradual enhancement in the minority carrier lifetimes (MCL) and lowering of interface defect density (Dit) is noticed with an increase in the annealing pressure compared to vacuum annealing. After annealing in ambient at atmospheric pressure (760 Torr), the lifetime is drastically enhanced from 456 to 1057 µs with the lowest Dit of 8.1 × 109 eV−1 cm−2 compared to the as-deposited and vacuum-annealed cases of 1.77 × 1010 and 2.50 × 1010 eV−1 cm−2, respectively. The variation in MCL is assigned to the inter-diffusion of atomic hydrogen in the a-Si matrix and reorganization of the strained bonds leading to the structural improvement, which is verified from the spectroscopic ellipsometry (SE) and Fourier Transfer Infrared Spectroscopy (FTIR) analysis. The as-deposited films seem to be dominated by non-equilibrium local network structure at the interface due to the initial growth condition of the film. In contrast, annealed films seem to be equilibrated by reducing the built-in strain of bulk a-Si:H as well as saturating orbitals of silicon atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data sets are available from the authors on request.

References

  1. D. Adachi, J.L. Hernández, K. Yamamoto, Appl. Phys. Lett. 107, 233506 (2015)

    Article  Google Scholar 

  2. A. Augusto, S.Y. Herasimenka, R.R. King, S.G. Bowden, C. Honsberg, J. Appl. Phys. 121, 205704 (2017)

    Article  Google Scholar 

  3. K. Ding, U. Aeberhard, F. Finger, U. Rau, J. Appl. Phys. 113, 134501 (2013)

    Article  Google Scholar 

  4. M. Boccard, Z.C. Holman, J. Appl. Phys. 118, 065704 (2015)

    Article  Google Scholar 

  5. R.A. Street, Phys. Rev. B 43, 2454 (1991)

    Article  CAS  Google Scholar 

  6. H. Fujiwara, M. Kondo, Appl. Phys. Lett. 90, 013503 (2007)

    Article  Google Scholar 

  7. A. Fontcuberta i Morral, P. Roca i Cabarrocas, J. Non Cryst. Solids. 299–302, 196 (2002)

    Article  Google Scholar 

  8. S. De Wolf, M. Kondo, Appl. Phys. Lett. 90, 042111 (2007)

    Article  Google Scholar 

  9. J. Mitchell, D. Macdonald, A. Cuevas, Appl. Phys. Lett. 94, 162102 (2009)

    Article  Google Scholar 

  10. H. Fujiwara, M. Kondo, Appl. Phys. Lett. 90, 13 (2007)

    Google Scholar 

  11. S. De Wolf, H. Fujiwara, M. Kondo, in 2008 33rd IEEE Photovolatic Spec. Conf (IEEE, 2008), pp. 1–4

  12. S. Olibet, E. Vallat-Sauvain, C. Ballif, Phys. Rev. B - Condens. Matter Mater. Phys. 76, 035326 (2007)

    Article  Google Scholar 

  13. T.F. Schulze, H.N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, L. Korte, Appl. Phys. Lett. 96, 252102 (2010)

    Article  Google Scholar 

  14. A.S. Gudovskikh, J.P. Kleider, J. Damon-Lacoste, P. Roca i Cabarrocas, Y. Veschetti, J.C. Muller, P.J. Ribeyron, E. Rolland, Thin Solid Films. 511–512, 385 (2006)

    Article  Google Scholar 

  15. A.S. Gudovskikh, J.P. Kleider, A. Froitzheim, W. Fuhs, E.I. Terukov, Thin Solid Films. 451–452, 345 (2004)

    Article  Google Scholar 

  16. J.P. Kleider, R. Chouffot, A.S. Gudovskikh, P. Roca i Cabarrocas, M. Labrune, P.J. Ribeyron, R. Brüggemann, Thin Solid Films. 517, 6386 (2009)

    Article  CAS  Google Scholar 

  17. A.S. Gudovskikh, J.P. Kleider, Appl. Phys. Lett. 90, 30 (2007)

    Article  Google Scholar 

  18. A.S. Gudovskikh, R. Chouffot, J.P. Kleider, N.A. Kaluzhniy, V.M. Lantratov, S.A. Mintairov, J. Damon-Lacoste, D. Eon, P.R. I Cabarrocas, P.J. Ribeyron, Thin Solid Films 516, 6786 (2008)

    Article  CAS  Google Scholar 

  19. M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad, V. Maydell, Thin Solid Films 515, 7475 (2007)

    Article  CAS  Google Scholar 

  20. H. Okamoto, H. Kida, S. Nonomura, K. Fukumoto, Y. Hamakawa, J. Appl. Phys. 54, 3236 (1983)

    Article  CAS  Google Scholar 

  21. A. Pandey, S. Bhattacharya, J. Panigrahi, S. Mandal, V.K. Komarala, Phys. Status Solidi Appl. Mater. Sci. 219, 2200183 (2022)

    Article  CAS  Google Scholar 

  22. S. Bhattacharya, A. Pandey, J. Panigrahi, S. Mandal, V.K. Komarala, Appl. Phys. A 129, 123 (2023)

    Article  CAS  Google Scholar 

  23. M. Kondo, M. Fukawa, L. Guo, A. Matsuda, J. Non Cryst. Solids. 266–269, 84 (2000)

    Article  Google Scholar 

  24. A.A. Howling, B. Strahm, P. Colsters, L. Sansonnens, C. Hollenstein, Plasma Sources Sci. Technol. 16, 679 (2007)

    Article  CAS  Google Scholar 

  25. U. Fantz, Plasma Phys. Control Fusion. 40, 1035 (1998)

    Article  CAS  Google Scholar 

  26. J. Ge, Z.P. Ling, J. Wong, R. Stangl, A.G. Aberle, T. Mueller, J. Appl. Phys. 113, 234310 (2013)

    Article  Google Scholar 

  27. E. Katsia, E. Amanatides, D. Mataras, Î. Soto, G.A. Voyiatzis, Sol. Energy Mater. Sol. Cells. 87, 157 (2005)

    Article  CAS  Google Scholar 

  28. S. Nunomura, M. Kondo, Appl. Phys. Lett. 93, 1 (2008)

    Article  Google Scholar 

  29. C. Leendertz, N. Mingirulli, T.F. Schulze, J.P. Kleider, B. Rech, L. Korte, Appl. Phys. Lett. 98, 202108 (2011)

    Article  Google Scholar 

  30. A. Richter, M. Hermle, S.W. Glunz, IEEE J. Photovolt. 3, 1184 (2013)

    Article  Google Scholar 

  31. M. Solcansky, J. Vanek, A. Poruba, Int. J. Photoenergy 2012, 1 (2012)

    Article  Google Scholar 

  32. J. Perrin, S.P.M. Schmitt, Chem. Phys. 67, 167 (1982)

    Article  CAS  Google Scholar 

  33. B. Strahm, A. Feltrin, R. Bartlome, C. Ballif, in Thin Film Sol. Technol, edited by A. E. Delahoy and L. A. Eldada (2009), p. 74090E

  34. R.A. Street, Phys. Rev. 8, 15 (n.d.).

  35. H. Fujiwara, Spectrosc. Ellipsom Princ Appl. 1, 395 (2007)

    Google Scholar 

  36. S. Kageyama, M. Akagawa, H. Fujiwara, Phys. Rev. B - Condens. Matter Mater. Phys. 83, 195205 (2011)

    Article  Google Scholar 

  37. G.F. Feng, M. Katiyar, J.R. Abelson, N. Maley, Phys. Rev. B 45, 9103 (1992)

    Article  CAS  Google Scholar 

  38. A. Fontcuberta i Morral, P. Roca i, Cabarrocas, C. Clerc, Phys. Rev. B 69, 125307 (2004)

    Article  Google Scholar 

  39. M. Kondo, S. De Wolf, H. Fujiwara, MRS Proc. 1066, 1066 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Department of Science and Technology (DST), Government of India, under the Water and Clean Energy area of the Technology Mission Division (Grant no. DST/TMD/CERI/RES/2020/48G). One of the authors (S. M.) would like to thank DST for providing INSPIRE Faculty award, vide sanction order number DST/INSPIRE/04/2017/000821. The authors also want to acknowledge the IIT Delhi Nanoscale Research Facility for the Ellipsometry measurements.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualization, Methodology, Data Curation, Investigation, Formal analysis, Writing—Original Draft, and Visualization. SB: Data Curation, Investigation, Formal analysis, and writing. JP: Investigation, Simulation, and Writing—review and editing. SM: Methodology, Investigation, Visualization, Project administration, Writing—review and editing, and Funding acquisition. VKK: Validation, Resources, Writing—Review and Editing, Visualization, Supervision, and Funding acquisition.

Corresponding author

Correspondence to Vamsi Krishna Komarala.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest or competing interest for this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Bhattacharya, S., Panigrahi, J. et al. Investigation of anisotropic textured crystalline silicon surface passivation with intrinsic amorphous silicon layers: role of annealing pressure conditions during passivation recovery. J Mater Sci: Mater Electron 34, 1576 (2023). https://doi.org/10.1007/s10854-023-10986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10986-7

Navigation