Skip to main content
Log in

BaTiO3-Bi(Mg3/4W1/4)O3 lead-free relaxor ferroelectric ceramics with improved energy storage properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, (1−x)BaTiO3xBi(Mg3/4W1/4)O3 [(1−x)BT–xBMW] lead-free ceramics have been prepared via solid-state reaction method. X-ray patterns indicated that the as-obtained ceramics show perovskite structure without the formation of a second phase and tetragonal phase of BT transformed into a pseudo-cubic phase via introduction of BMW. The grain size and density of the samples were observed by SEM, average grain size of the ceramics gradually decreased from 3.75 μm at x = 0.05 to 2.54 μm at x = 0.15, but it increased to 2.83 µm at x = 20. It was observed from P-E hysteresis loops that modification with appropriate amount of BMW was an effective approach to modulate relaxation behavior of BT, subsequently its energy-storage performance was promoted. Improved energy-storage performance of Wrec = 1.71 J cm−3 and η = 91.97% can be achieved in the 0.85BT–0.15BMW ceramics, accompanied with outstanding temperature (20–120 °C) and frequency (1–100 Hz) stabilities. (1 − x)BT–xBMW ceramic is expected to be a potential candidate for energy-storage equipments with high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. J.L. Li, Z.H. Shen, X.H. Chen et al., Nat. Mater. 19, 1 (2020)

    Article  Google Scholar 

  2. D.X. Li, X.J. Zeng, Z.P. Li et al., J. Adv. Ceram. 10, 183–192 (2021)

    Google Scholar 

  3. T.Y. Li, X.W. Jiang, J. Li et al., ACS Appl. Mater. Interfaces. 14, 22263–22269 (2022)

    Article  CAS  Google Scholar 

  4. R. Xu, B.R. Li, J.J. Tian et al., Appl. Phys. Lett. 110, 142904 (2017)

    Article  Google Scholar 

  5. L. Zhao, Q. Liu, J. Gao et al., Adv. Mater. 29, 1701824 (2017)

    Article  Google Scholar 

  6. Z. Yan, D. Zhang, X. Zhou et al., J. Mater. Chem. A. 7, 10702–10711 (2019)

    Article  CAS  Google Scholar 

  7. B.C. Luo, X.H. Wang, E.K. Tian et al., ACS Appl. Mater. Interfaces. 9, 19963–19972 (2017)

    Article  CAS  Google Scholar 

  8. Q. Wang, P.M. Gong, C.M. Wang, Ceram. Int. 46, 22452–22459 (2020)

    Article  CAS  Google Scholar 

  9. O. García-Zaldívar, S. Díaz-Castañón, F.J. Espinoza-Beltran et al., J. Adv. Dielectr. 05, 1550034 (2016)

    Article  Google Scholar 

  10. H. Pan, F. Li, Y. Liu et al., Science 365, 578–582 (2019)

    Article  CAS  Google Scholar 

  11. Q.Y. Hu, Y. Tian, Q.S. Zhu et al., Nano Energy 67, 104264 (2020)

    Article  CAS  Google Scholar 

  12. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    Article  CAS  Google Scholar 

  13. W.B. Li, D. Zhou, L.X. Pang et al., J. Mater. Chem. A. 5, 19607–19612 (2017)

    Article  CAS  Google Scholar 

  14. W.B. Li, D. Zhou, L.X. Pang, Appl. Phys. Lett. 110, 132902 (2017)

    Article  Google Scholar 

  15. S. Shaukat, M. Khaleeq-ur-Rahman, I.M. Dildar, R. Binions, Ceram. Int. 45, 1918–1927 (2019)

    Article  CAS  Google Scholar 

  16. X.B. Zhao, Z.Y. Zhou, R.H. Liang et al., Ceram. Int. 43, 9060–9066 (2017)

    Article  CAS  Google Scholar 

  17. X.C. Huang, S. Li, C.C. Wang et al., J. Mater. Sci.-Mater. Electron. 33, 10042–10056 (2022)

    Article  CAS  Google Scholar 

  18. G.F. Liu, X.L. Chen, G.S. Huang et al., J. Mater. Sci.-Mater. Electron. 28, 3931–3935 (2016)

    Article  Google Scholar 

  19. N. Zhong, X.L. Dong, D.Z. Sun et al., Mater. Sci. Eng. B 106, 263–268 (2004)

    Article  Google Scholar 

  20. C.M. Wang, J.F. Wang, W.B. Su, J. Am. Ceram. Soc. 89, 2502–2508 (2006)

    Article  CAS  Google Scholar 

  21. N.O. Birge, Y.H. Jeong, S.R. Nagel et al., Phys. Rev. B 30, 2306–2308 (1984)

    Article  CAS  Google Scholar 

  22. P. He, D. Kiyoshi, H. Masaki, N. Eiji, J. Phys. Soc. Jpn. 59, 1835–1840 (1990)

    Article  CAS  Google Scholar 

  23. V. Bobnar, J. Holc, M. Hrovat, M. Kosec. J. Appl. Phys. 101, 074103 (2007)

    Article  Google Scholar 

  24. V.A. Isupov, Physica Status Solidi (A) 181, 211–218 (2000)

    Article  CAS  Google Scholar 

  25. R.J. Bratton, T.Y. Tien, J. Am. Ceram. Soc. 50, 90–93 (2006)

    Article  Google Scholar 

  26. B. Xiong, H. Hao, S.J. Zhang et al., Ceram. Int. 38, 45–48 (2012)

    Article  Google Scholar 

  27. K. Uchino, S. Nomura. Ferroelectrics 44, 55–61 (2011)

    Google Scholar 

  28. J.L. Ma, S.G. Yan, C.H. Xu et al., Mater. Lett. 247, 40–43 (2019)

    Article  CAS  Google Scholar 

  29. Y. Yao, Y. Li, N.N. Sun et al., Ceram. Int. 44, 5961–5966 (2018)

    Article  CAS  Google Scholar 

  30. B.B. Yan, H.Q. Fan, C. Wang et al., Ceram. Int. 46, 281–288 (2020)

    Article  Google Scholar 

  31. C.W. Tao, X.Y. Geng, J. Zhang et al., J. Eur. Ceram. Soc. 38, 4946–4952 (2018)

    Article  CAS  Google Scholar 

  32. Z.L. Yu, Y.F. Liu, M.Y. Shen et al., Ceram. Int. 43, 7653–7659 (2017)

    Article  CAS  Google Scholar 

  33. B.B. Yan, H.Q. Fan, A.K. Yadav et al., Ceram. Int. 46, 9637–9645 (2020)

    Article  CAS  Google Scholar 

  34. D.X. Li, Z.Y. Shen, Z.P. Li et al., J. Mater. Chem. C 8, 7650–7657 (2020)

    Article  CAS  Google Scholar 

  35. D.X. Li, Z.Y. Shen, Z.P. Li et al., J. Adv. Ceram. 9, 183–192 (2020)

    Article  CAS  Google Scholar 

  36. X.W. Li, X.H. Hao, S.L. An et al., J. Mater. Sci. Mater. Electron. 33, 5265–5272 (2022)

    Article  CAS  Google Scholar 

  37. J.N. Sui, H.Q. Fan, H.J. Peng et al., Ceram. Int. 45, 20427–20434 (2019)

    Article  CAS  Google Scholar 

  38. J.P. Ma, X.M. Chen, W.Q. Ouyang et al., Ceram. Int. 44, 4436–4441 (2018)

    Article  CAS  Google Scholar 

  39. Q. Li, M.Y. Li, C. Wang et al., Ceram. Int. 45, 19822–19828 (2019)

    Article  CAS  Google Scholar 

  40. Y.J. Wu, Y.H. Huang, N. Wang et al., J. Eur. Ceram. Soc. 37, 2099–2104 (2017)

    Article  CAS  Google Scholar 

  41. F. Li, M.X. Zhou, J.W. Zhai et al., J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    Article  CAS  Google Scholar 

  42. Q.Y. Hu, J.H. Bian, P.S. Zelenovskiy et al., J. Appl. Phys. 124, 054101 (2018)

    Article  Google Scholar 

  43. J. Shi, X. Liu, W.C. Tian, J. Mater. Sci. Technol. 34, 2371–2374 (2018)

    Article  CAS  Google Scholar 

  44. P.X. Qiao, X.F. Chen, Z. Liu et al., Mater. Lett. 260, 126877 (2020)

    Article  CAS  Google Scholar 

  45. D.G. Zheng, R.Z. Zuo, J. Eur. Ceram. Soc. 37, 413–418 (2017)

    Article  CAS  Google Scholar 

  46. X.Y. Dong, X. Li, H.Y. Chen et al., Ceram. Int. 47, 6077–6083 (2021)

    Article  CAS  Google Scholar 

  47. L. Cao, Y. Yuan, B. Tang et al., J. Eur. Ceram. Soc. 40, 2366–2374 (2020)

    Article  CAS  Google Scholar 

  48. Z.T. Chen, X.Z. Bai, H.L. Wang et al., Ceram. Int. 46, 11549–11555 (2020)

    Article  CAS  Google Scholar 

  49. X.Y. Du, Y.P. Pu, X. Peng et al., Ceram. Int. 46, 11492–11498 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by National Natural Science Foundation of China (No. 52002002), Natural Science Foundation of Anhui Province of China (Nos. 1908085QE220, 2008085ME132), Scientific Research Starting Foundation of Anhui Polytechnic University (Nos. 2019YQQ003, 2021YQQ031), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (2019LCX019) and the Funds for Distinguished Young Scientists of Anhui Polytechnic University (2020, S022021040), University Outstanding Young Talents Foreign Visiting and Training Program of Anhui Province (gxgwfx2022017).

Author information

Authors and Affiliations

Authors

Contributions

QL and HF: Investigation, writing original draft. TL, and GL: Investigation. YF: Editing. CZ: Validation, Resources, Writing-review and editing.

Corresponding author

Correspondence to Cong Zhou.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

This research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Feng, H., Li, T. et al. BaTiO3-Bi(Mg3/4W1/4)O3 lead-free relaxor ferroelectric ceramics with improved energy storage properties. J Mater Sci: Mater Electron 34, 1569 (2023). https://doi.org/10.1007/s10854-023-10968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10968-9

Navigation