Skip to main content
Log in

Fabrication and characterization of nano-ZnO/CNTs/PDMS flexible pressure sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) is widely used as an elastic substrate for flexible pressure sensors. Functional materials integrated into the network of PDMS are usually able to enhance sensing performance. In this work, carbon nanotubes (CNTs) mixed with nano-zinc oxide (nano-ZnO) were used as conductive filler to prepare nano-ZnO/CNTs/PDMS active layer to assemble a flexible pressure sensor. At 0 ~ 10 kPa, nano-ZnO/CNTs/PDMS pressure sensor exhibits a sensitivity of 0.18 kPa−1 and a response time of 45.5 ms. The results confirm that the combination of CNTs and nano-ZnO provides the PDMS substrate with improved pressure sensing properties. Moreover, the nano-ZnO/CNTs/PDMS sensor maintains a good stability after 6000 cycles. After assembly, the nano-ZnO/CNTs/PDMS sensor could be used to monitor the movement of various body parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Chen, R. Chen, C. Zhao et al., A novel medically imageable intelligent cellulose nanofibril-based injectable hydrogel for the chemo-photothermal therapy of tumors. Chem. Eng. J. 431(3), 133255 (2022)

    Article  CAS  Google Scholar 

  2. B. Kuzubasoglu, E. Sayar, C. Cochrane et al., Wearable temperature sensor for human body temperature detection. J. Mater. Sci.: Mater. Electron. 32(4), 4784–4797 (2021)

    CAS  Google Scholar 

  3. K. Shen, K. Xu, M. Zhang et al., Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chem. Eng. J. 451, 138525 (2023)

    Article  CAS  Google Scholar 

  4. Z. Liu, J. Liu, J. Zhang et al., Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Mater. Chem. Front. 4(11), 3319–3327 (2020)

    Article  CAS  Google Scholar 

  5. B. Ying, R. Chen, R. Zuo et al., An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv. Func. Mater. 31(42), 2104665 (2021)

    Article  CAS  Google Scholar 

  6. D. Choi, J. Bae, S. Lee et al., Emotion-interactive empathetic transparent skin cushion with tailored frequency-dependent hydrogel-plasticized nonionic polyvinyl chloride interconnections. Chem. Eng. J. 442, 136142 (2022)

    Article  CAS  Google Scholar 

  7. G. Schwartz, B. Tee, J. Mei et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013)

    Article  Google Scholar 

  8. W. Xue, G. Yang, X. Zuo et al., Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014)

    Article  Google Scholar 

  9. Y. Xiao, Research on flexible tactile sensors based on conductive composites (University of Electronic Science and Technology of China, Chengdu, 2021), pp.18–21

    Google Scholar 

  10. K. Takei, T. Takahashi, J. Ho et al., Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10), 821–826 (2010)

    Article  CAS  Google Scholar 

  11. B. Zhu, Z. Niu, H. Wang et al., Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10(18), 3625–3631 (2014)

    Article  CAS  Google Scholar 

  12. C. Sheng, S. Yi, X. Feng, Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces. 10(40), 34646–34654 (2018)

    Article  Google Scholar 

  13. M. Jian, K. Xia, Q. Wang, et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017)

    Article  Google Scholar 

  14. C. Deng, L. Pan, R. Cui et al., Wearable strain sensor made of carbonized cotton cloth. J. Mater. Sci.: Mater. Electron. 28(4), 3535–3541 (2017)

    CAS  Google Scholar 

  15. C. Liu, J. Choi, Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain. Microelectron. Eng. 117, 1–7 (2014)

    Article  Google Scholar 

  16. D. Kumar, P. Jha, A. Chouksey et al., Flexible single walled nanotube based chemical sensor for 2,4-dinitrotoluene sensing. J. Mater. Sci.: Mater. Electron. 29(8), 6200–6205 (2018)

    CAS  Google Scholar 

  17. C. Jin, D. Liu, M. Li et al., Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors. J. Mater. Sci.: Mater. Electron. 31(6), 4788–4796 (2020)

    CAS  Google Scholar 

  18. H. Zhang, X. Sun, M. Hubbe et al., Flexible and pressure-responsive sensors from cellulose fibers coated with multiwalled carbon nanotubes. ACS Appl. Electron. Mater. 1(7), 1179–1188 (2019)

    Article  CAS  Google Scholar 

  19. X. Zhang, D. Xiang, W. Zhu et al., Flexible and high-performance piezoresistive strain sensors based on carbon nanoparticles@polyurethane sponges. Compos. Sci. Technol. 200, 108437 (2020)

    Article  CAS  Google Scholar 

  20. Q. Huang, Y. Jiang, Z. Duan et al., Protrusion microstructure-induced sensitivity enhancement for zinc oxide-carbon nanotube flexible pressure sensors. ACS Appl. Electron. Mater. 3(12), 5506–5513 (2021)

    Article  CAS  Google Scholar 

  21. A. Ahmed, Y. Jia, Y. Huang et al., Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor. J. Mater. Sci.: Mater. Electron. 30(37), 14007–14021 (2019)

    CAS  Google Scholar 

  22. A. Ahmed, Y. Jia, H. Deb et al., Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response. J. Mater. Sci.: Mater. Electron. 33(7), 3965–3981 (2022)

    CAS  Google Scholar 

  23. K. Zhang, Z. Lin, Highly sensitive ethanol sensor based on zinc oxide-based nanomaterials with low power consumption. J. Mater. Sci.: Mater. Electron. 32(13), 17395–17405 (2021)

    CAS  Google Scholar 

  24. S. Chen, J. Luo, X. Wang et al., Fabrication and piezoresistive/piezoelectric sensing characteristics of carbon nanotube/pva/nano-zno flexible composite. Sci. Rep. 10(1), 8895 (2020)

    Article  CAS  Google Scholar 

  25. H. Sadiq, H. Hui, S. Huang et al., A flexible pressure sensor based on PDMS-CNTs film for multiple applications. IEEE Sens. J. 22(4), 3033–3039 (2022)

    Article  CAS  Google Scholar 

  26. J. Wang, C. Zhang, D. Chen et al., Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS. ACS Appl. Mater. Interfaces. 12(46), 51853–51854 (2020)

    Article  Google Scholar 

  27. Y. Zhao, J. Liu, H. Li et al. An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP. Opt. and Laser Technol. 151, 107998 (2022)

    Article  Google Scholar 

  28. J. Li, G. Zhou, Y. Hong et al., Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted β-phase PVDF. Sens. Actuators A Phys. 337, 113415 (2022)

    Article  CAS  Google Scholar 

  29. N. Serra, T. Maeder, P. Ryser, Piezoresistive effect in epoxy-graphite composites. Sens. Actuators A 186, 198–202 (2012)

    Article  CAS  Google Scholar 

  30. N. Hu, Y. Karube, C. Yan et al., Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 2929–2936 (2008)

    Article  CAS  Google Scholar 

  31. J. Daniel, M. Debkishore, P. Kevin et al., A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 12(4), 1821–1825 (2012)

    Article  Google Scholar 

  32. F. Azhari, N. Banthia, Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cement Concr. Compos. 34(7), 866–873 (2012)

    Article  CAS  Google Scholar 

  33. V. Borjanovic, L. Bistricic, I. Vlasov et al., Influence of proton irradiation on the structure and stability of poly(dimethylsiloxane) and poly(dimethylsiloxane)-nanodiamond composite. J. Vac. Sci. Technol., B 27(6), 2396–2403 (2009)

    Article  CAS  Google Scholar 

  34. M. Odziemkowski, J. Koziel, D. Irish et al., Sampling and raman confocal microspectroscopic analysis of airborne particulate matter using poly(dimethylsiloxane) solid-phase microextraction fibers. Anal. Chem. 73(13), 3131–3139 (2001)

    Article  CAS  Google Scholar 

  35. L. Jayes, A. Hard, C. Séné et al., Vibrational spectroscopic analysis of silicones: a fourier transform-Raman and inelastic neutron scattering investigation. Anal. Chem. 75(4), 742 (2003)

    Article  CAS  Google Scholar 

  36. V. Borjanović, L. Bistričić, L. Mikac et al., Polymer nanocomposites with improved resistance to ionizing radiation. J. Vacuum Sci. Technol. B. 30(4), 041803 (2012)

    Article  Google Scholar 

  37. M. Dresselhaus, G. Dresselhaus, R. Saito et al., Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005)

    Article  Google Scholar 

  38. LM. Johnson, L. Gao, CW. Shields IV et al., Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 11, 22 (2013)

    Article  CAS  Google Scholar 

  39. S. Hamouni, O. Arous, D. Abdessemed et al., Alcohol and alkane organic extraction using pervaporation process. Macromol. Symp. 386(1), 1800247 (2019)

    Article  CAS  Google Scholar 

  40. Y. Ma, Y. Yue, H. Zhang et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12, 3209–3216 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the projects of Innovation Team Project of Zhuhai City (No. ZH0405190005PWC), Zhuhai Industry-University-Institute Cooperation (No. 2220004002990), Sichuan Natural Science Foundation (No. 2022NSFSC0654) and UESTC-Sichuan Cancer Hospital 2021 Medical-engineering Oncology Innovation Fund (No. ZYGX2021YGCX013).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by ZX, SW, and JL. The first draft of the manuscript was written by JL. Project administration, conceptualization, and formal analysis were performed by WH, ZN, and YH. Visualization, Investigation, and Methodology were performed by YC, YH, GZ, and YT. JZ helped answer the reviewer comments and modified the English expression. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jiaqiang Zhang or Shouxu Wang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, J., Hong, Y. et al. Fabrication and characterization of nano-ZnO/CNTs/PDMS flexible pressure sensor. J Mater Sci: Mater Electron 34, 1600 (2023). https://doi.org/10.1007/s10854-023-10966-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10966-x

Navigation