Skip to main content

Advertisement

Log in

Investigation of ethylene glycol, α-terpineol, and polyethylene glycol 400 on the sintering properties of Cu–Ag core–shell micro/nano-mixed paste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the rapid development of the 3rd semiconductors, the metal nanoparticles are investigated to be applied in the die-attached interconnect materials. However, the organic solvent used in the nanoparticle paste needs to be addressed. In this work, we adopted the liquid phase reduction method to synthesize Cu–Ag core–shell micro/nano-mixed particles (Cu@Ag MNPs), which achieved better anti-oxidation properties than Cu MNPs. Due to the suitable boiling point and viscosity, the electrical properties and hardness of the sintered films prepared by polyethylene glycol 400 (PEG-400) are better than those of ethylene glycol and α-terpineol. The electrical properties reach 43.82 µΩ cm and the hardness reach 61.3 HV at 300 °C. The shear strength of the joint sintered by Cu@Ag MNPs paste with PEG-400 can reach 20.14 MPa at 300 °C. Besides, the sintered Cu@Ag MNPs film exhibits a denser structure than Ag MNPs and Cu MNPs film. Therefore, Cu@Ag MNPs have great development prospects in the 3rd semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.T. Yadlapalli, A. Kotapati, R. Kandipati, Int. J. Energy Res. 9, 45 (2021)

    Google Scholar 

  2. B. Zhang, M. Ghassemi, Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 1, 28 (2021)

    Google Scholar 

  3. Y. Zhang, A. Zubair, Z. Liu, Semicond. Sci. Technol. 5, 36 (2021)

    Google Scholar 

  4. J.Y. Wen, Y.H. Tian, C.J. Hang, Nanomaterials. 9, 960 (2019)

    Article  Google Scholar 

  5. M.Y. LI, Y. Xiao, Z.H. Zhang, ACS Appl. Mater. Interfaces. 7, 9157 (2015)

    Article  CAS  Google Scholar 

  6. Y. Zhou, G.M. Zhang, T. Xu, ACS Biomater. Sci. Eng. 6, 2770 (2020)

    Article  CAS  Google Scholar 

  7. M.A. Zakaria, A.A. Menazea, A.M. Mostafa, Surf. Interfaces. 19, 100438 (2020)

    Article  CAS  Google Scholar 

  8. I.X. Yin, J. Zhang, I.S. Zhao, Int. J. Nanomen. 15, 2555 (2020)

    Article  CAS  Google Scholar 

  9. J. Ding, J. Liu, Q.Y. Tian, Nanoscale Res. Lett. 11, 1 (2016)

    Article  Google Scholar 

  10. A. Rantamaki, J. Lindfors, M. Silvennoinen, PTL 25, 1062 (2013)

    Article  CAS  Google Scholar 

  11. L. Canham, A. Nassiopoulou, V. Parkhutik, Phys. Status Sulidi A 197, 3 (2003)

    Article  Google Scholar 

  12. X. Yu, J.J. Li, T. Shi, J. Alloy Compd. 709, 700 (2017)

    Article  Google Scholar 

  13. S.C. Fu, Y.H. Mei, G.Q. Lu, Mater. Lett. 128, 42 (2014)

    Article  CAS  Google Scholar 

  14. S. Wang, H.J. Ji, M.Y. Li, Mater. Lett. 85, 61 (2012)

    Article  CAS  Google Scholar 

  15. S. Wang, M.Y. Li, H.J. Ji, Scripta Mater. 69, 789 (2013)

    Article  CAS  Google Scholar 

  16. Y. Akada, H. Tatsumi, T. Yamaguchi, Mater. trans. 49, 1537 (2008)

    Article  CAS  Google Scholar 

  17. K. Andritsos, L. Theodorakos, F. Zacharatos, Appl. Surf. Sci. 506, 144968 (2020)

    Article  CAS  Google Scholar 

  18. B. Liao, H. Wang, L. Kang, J. Mater. Sci-Mater EL. 32, 5680 (2021)

    Article  CAS  Google Scholar 

  19. P. Yi, K. Xiao, C.F. Dong, Bioelectrochemistry. 119, 203 (2018)

    Article  CAS  Google Scholar 

  20. K.S. Kim, J.O. Bang, S.B. Jung, Curr. Appl. Phys. 13, S190–S194 (2013)

    Article  Google Scholar 

  21. K.S. Kim, Y.T. Kwon, Y.H. Choa, S.B. Jung, Microelectron. Eng. 106(jun), 27–32 (2013)

    Article  CAS  Google Scholar 

  22. R. Riva, C. Buttay, B. Allard, P. Bevilacqua, Microelectron. Reliab. 53(9–11), 1592–1596 (2013)

    Article  CAS  Google Scholar 

  23. B.I. Noh, J.W. Yoon, K.S. Kim, Y.C. Lee, S.B. Jung, J. Electron. Mater. 40(1), 35–41 (2011)

    Article  CAS  Google Scholar 

  24. C.H. Tsou, K.N. Liu, H.T. Lin, F.Y. Ouyang, J. Electron. Mater. 45(12), 1–7 (2016)

    Article  Google Scholar 

  25. G.Q. Lu, C. Yan, Y.H. Mei, X. Li, Mater. Chem. and Phys. 151, 18–21 (2015)

    Article  CAS  Google Scholar 

  26. W.H. Lin, C.H. Tsou, F.Y. Ouyang, J. Mater. Sci-Mater EL. 29(21), 18331–18342 (2018)

    Article  CAS  Google Scholar 

  27. Z. Feng, C.R. Marks, A. Barkatt, Oxid. met. 60(5–6), 393–408 (2003)

    Article  CAS  Google Scholar 

  28. C.H. Ryu, S.J. Joo, H.S. Kim, Thin Solid Films. 675(APR1), 23–33 (2019)

    Article  CAS  Google Scholar 

  29. H.J. Park, Y. Jo, M.K. Cho, Nanoscale. 10, 1039 (2018)

    Google Scholar 

  30. S.J. Joo, M.H. Yu, E.B. Jeon, H.S. Kim, Compos. Sci. and Technol. 142(Apr12), 189–197 (2017)

    Article  CAS  Google Scholar 

  31. Y. Gao, W.L. Li, C.T. Chen, H. Zhang, J.T. Jiu, C.F. Li, S. Nagao, K. Suganuma, Mater Des. 160(DEC), 1265–1272 (2018)

    Article  CAS  Google Scholar 

  32. E.B. Choi, J.H. Lee, J. Alloys Compd. 689, 952–958 (2016)

    Article  CAS  Google Scholar 

  33. S.J. Kim, E.A. Stach, C.A. Handwerker, Appl. Phys. Lett. 96, 144101 (2010)

    Article  Google Scholar 

  34. W.C. Yang, W. Zheng, S.W. Hu, M.Y. Li, Mater. Let. 299, 129781 (2021)

    Article  CAS  Google Scholar 

  35. X. Yu, J.J. Li, T.L. She, C.L. Cheng, G.L. Liao, J.H. Fan, T.X. Li, Z.R. Tang, J. Alloys Compd. 724, 365–372 (2017)

    Article  CAS  Google Scholar 

  36. Y. Huang, F.S. Wu, Z. Zhou, L.Z. Zhou, H. Liu, Nanotechnology. 31(17) (2020)

  37. M. Grouchko, A. Kamyshny, S. Magdassi, J. Mater. Chem. 19, 3057 (2009)

    Article  CAS  Google Scholar 

  38. C. Lee, N.R. Kim, J. Koo, Y.J. Lee, H.M. Lee, Nanotechnology. 26(45), 455601 (2015)

    Article  Google Scholar 

  39. J. Kähler, N. Heuck, G. Palm, A. Stranz, A. Waag, E. Peiner, IEEE 1–7 (2011)

  40. J. Jiu, H. Zhang, S. Koga, S. Nagao, K. Suganuma, J. Mater. Sci-Mater EL. 26, 7183–7191 (2015)

    Article  CAS  Google Scholar 

  41. Y.Y. Dai, M.Z. Ng, P. Anantha, Y.D. Lin, Z.G. Li, C.L. Gan, C.S. Tan, Appl. Phys. Lett. 108(26), 263103 (2016)

    Article  Google Scholar 

  42. Y. Mou, J.X. Liu, H. Cheng, Y. Peng, M.X. Chen, Jom. 71, 9 (2019)

    Article  Google Scholar 

  43. K. Suganuma, S. Sakamoto, N. Kagami, S. Soichi, K. Noriko, W. Daisuke, K. Keunsoo, N Masaya Microelectron Reliab. 52, 35–380 (2012)

    Google Scholar 

  44. M. Kuramoto, S. Ogawa, M. Niwa, K.S. Kim, K. Suganuma, IEEE T Comp Pack and Man. 1(5), 653–659 (2011)

    CAS  Google Scholar 

  45. D. Tomotoshi, H. Kawasaki, Nanomaterials. 10(9), 1689 (2020)

    Article  CAS  Google Scholar 

  46. E.B. Choi, J.H. Lee, Appl. Surf. Sci. 546, 149156 (2021)

    Article  CAS  Google Scholar 

  47. W. Liu, H. Wang, K.S. Huang, C.M. Wang, A.T. Wu, J. Taiwan. Inst. Chem. E. 125, 394–401 (2021)

    Article  CAS  Google Scholar 

  48. L.J. Guo, W. Liu, C Q. Wang Mater. Lett. 282, 128845 (2021)

    Article  CAS  Google Scholar 

  49. L.J. Guo, W. Liu, X.L. Ji, Y. Zhong, C.J. Hang, C.Q. Wang, ACS Appl. Electron. Ma. 4(7), 3457–3469 (2022)

    Article  CAS  Google Scholar 

  50. T. Ogura, T. Yagishita, S. Takata, T. Fujimoto, A Hirose Mater. Trans. 54(6), 860–865 (2013)

    Article  CAS  Google Scholar 

  51. Q. Gao, W. Zhou, Z.H. Ji, X.B. Wang, Z.D. Xia, F. Guo, ICEPT (2022). https://doi.org/10.1109/ICEPT56209.2022.9873105

    Article  Google Scholar 

  52. Z.Z. Fang, H.T. Wang, X. Wang, V. Kumar, Ceram. Trans. 209, 389 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 61904008), Beijing Municipal Natural Science Foundation (No. KZ202210005002) and National Natural Science Foundation of China (Grant No. 52001013).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WZ, ZX, XW, YW, ZY and FG. The first draft of the manuscript was written by QG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Zhou or Fu Guo.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose for this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 215134.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhou, W., Xia, Z. et al. Investigation of ethylene glycol, α-terpineol, and polyethylene glycol 400 on the sintering properties of Cu–Ag core–shell micro/nano-mixed paste. J Mater Sci: Mater Electron 34, 1585 (2023). https://doi.org/10.1007/s10854-023-10965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10965-y

Navigation