Skip to main content
Log in

Parametric optimization and prediction of enhanced thermoelectric performance in co-doped CaMnO3 using response surface methodology and neural network

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, two different combinations of materials are prepared, and the effects on dual doping in Ca1−xyGdxSrxMnO3 and Ca1−xyCexSrxMnO3 (x = 0, 0.025, 0.05, y = 0, 0.025, 0.05) materials are evaluated, and its parameters are optimized and predicted by the Box-Benhken design in the RSM method. The activation energy was measured with respect to different thermoelectrical material concentrations. RSM design is validated using hybrid DBN-RSO. The results show that increasing temperature, increases the amount of doping, decreases the thermal conductivity (k) and increases the electrical conductivity (σ) and power factor (PF). A bigger number of merits was also reached by increasing the amount of doping and the temperature. At 1000 K, the Ca0.95Gd0.05Sr0.05MnO3 material has a low thermal conductivity and the highest figure of merit (ZT) value of 0.24, which is more than Ca0.95Ce0.05Sr0.05MnO3. The predicted values from the DBN-RSO method provide results that are closer to the experimental observations. The highest score (ZT) that the DBN-RSO prediction received was 0.26. Besides, the regression value of 99% is obtained from the experimented and predicted values. It shows the confidence and fitness of values. Also, the DBN-RSO achieves closer results to the experimental design with the lowest error value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article.

References

  1. M. Hong, Z.G. Chen, L. Yang, J. Zou, BixSb2− xTe3 nanoplates with enhanced thermoelectric performance due to sufficiently decoupled electronic transport properties and strong wide-frequency phonon scatterings. Nano Energy 20, 144–155 (2016)

    Article  CAS  Google Scholar 

  2. W. Xia, Z. Pei, K. Leng, X. Zhu, Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Res. Lett. 15(1), 1–55 (2020)

    Article  Google Scholar 

  3. Y. Sun, C.A. Di, W. Xu, D. Zhu, Advances in n-type organic thermoelectric materials and devices. Adv. Electron.Mater. 5(11), 1800825 (2019)

    Article  CAS  Google Scholar 

  4. D. Lee, H. Park, G. Park, J. Kim, H. Kim, H. Cho, S. Han, W. Kim, Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy 188, 116019 (2019)

    Article  CAS  Google Scholar 

  5. D. Feng, Z.H. Ge, Y.X. Chen, J. Li, J. He, Hydrothermal synthesis of SnQ (Q= Te, Se, S) and their thermoelectric properties. Nanotechnology 28(45), 455707 (2017)

    Article  Google Scholar 

  6. K. Yadagiri, R. Nithya, Rare earth manganite: ac electrical properties of Dy1−xKxMnO3 (x= 0.1, 0.2). J. Mater. Sci. 30, 9973–9982 (2019)

    CAS  Google Scholar 

  7. J. Touthang, M. Maisnam, Improvement in the magnetic hysteresis properties of nanocrystalline lithium ferrites with addition of yttrium manganite. Integr. Ferroelectr. 203(1), 133–141 (2019)

    Article  CAS  Google Scholar 

  8. M. Rahmani, C. Pithan, R. Waser, Electric transport properties of rare earth doped YbxCa1-xMnO3 ceramics (part III: Point defect chemistry). J. Eur. Ceram. Soc. 40(5), 2007–2012 (2020)

    Article  CAS  Google Scholar 

  9. S.I. Bezzubov, A.A. Bilyalova, I.S. Zharinova, M.A. Lavrova, Y.M. Kiselev, V.D. Dolzhenko, Synthesis, structure, and optical properties of lanthanum (III), cerium (III), praseodymium (III), and nickel (II) heterometallic complexes with glycine. Russ. J. Inorg. Chem. 62, 1197–1201 (2017)

    Article  CAS  Google Scholar 

  10. B. Sattibabu, A.K. Bhatnagar, Specific heat of hexagonal Yb1–xSrxMnO3. J. Therm. Anal. Calorim. 130, 2015–2023 (2017)

    Article  CAS  Google Scholar 

  11. M. Sotoudeh, S. Rajpurohit, P. Blöchl, D. Mierwaldt, J. Norpoth, V. Roddatis, S. Mildner, B. Kressdorf, B. Ifland, C. Jooss, Electronic structure of Pr1−xCaxMnO3. Phys. Rev. B 95(23), 235150 (2017)

    Article  Google Scholar 

  12. M.H. Ehsani, T. Raoufi, Effect of Gd substitution on the critical scaling of the ferromagnetic transition of La0.6-xGdxr0.4MnO3 (x= 0, 0.05, 0.1) manganite. J. Alloys Compds. 769, 649–659 (2018)

    Article  CAS  Google Scholar 

  13. A. Rasras, R. Hamdi, S. Mansour, A. Samara, Y. Haik, Effects of the sintering temperature on the La0.63Gd0.37MnO3 structure and magnetic properties. Appl. Phys. A 126, 1–4 (2020)

    Article  Google Scholar 

  14. S.B. Mary, M. Francis, V.G. Sathe, V. Ganesan, A.L. Rajesh, Enhanced thermoelectric property of nanostructured CaMnO3 by sol-gel hydrothermal method. Physica B 575, 411707 (2019)

    Article  CAS  Google Scholar 

  15. D. Liu, Y. Zhang, H. Kang, J. Li, Z. Chen, T. Wang, Direct preparation of La-doped SrTiO3 thermoelectric materials by mechanical alloying with carbon burial sintering. J. Eur. Ceram. Soc. 38(2), 807–811 (2018)

    Article  CAS  Google Scholar 

  16. J.W. Zhang, Z.W. Wu, F.P. Zhang, X.Y. Yang, J.X. Zhang, Synergistically optimized electrical and thermal transport properties of CaMnO3 via doping high solubility Sr. J. Electron. Mater. 50, 649–656 (2021)

    Article  CAS  Google Scholar 

  17. S. Quetel-Weben, R. Retoux, J.G. Noudem, Thermoelectric Ca0.9Yb0.1MnO3−δ grain growth controlled by spark plasma sintering. J. Eur. Ceram. Soc. 33(10), 1755–1762 (2013)

    Article  CAS  Google Scholar 

  18. C.M. Kim, D.H. Kim, H.Y. Hong, K. Park, Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting. J. Eur. Ceram. Soc. 40(3), 735–741 (2020)

    Article  CAS  Google Scholar 

  19. R. Löhnert, M. Stelter, J. Töpfer, Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3−δ with improved thermoelectric properties. Mater. Sci. Eng. B 223, 185–193 (2017)

    Article  Google Scholar 

  20. L. Imponenti, K.J. Albrecht, J.W. Wands, M.D. Sanders, G.S. Jackson, Thermochemical energy storage in strontium-doped calcium manganites for concentrating solar power applications. Sol. Energy 151, 1–3 (2017)

    Article  CAS  Google Scholar 

  21. Z. Fei-Peng, Z. Jing-Wen, Z. Jiu-Xing, Y. Xin-Yu, L. Qing-Mei, Z. Xin, Effects of Sr doping on electronic and thermoelectrical transport properties of CaMnO3 based oxide. Acta Physica Sin. 66(24), 247202 (2017)

    Article  Google Scholar 

  22. M.J. Dzara, J.M. Christ, P. Joghee, C. Ngo, C.A. Cadigan, G. Bender, R.M. Richards, R. O’Hayre, S. Pylypenko, La and Al co-doped CaMnO3 perovskite oxides: from interplay of surface properties to anion exchange membrane fuel cell performance. J. Power Sources 375, 265–276 (2018)

    Article  CAS  Google Scholar 

  23. C. Li, Q. Chen, Y. Yan, Effects of Pr and Yb dual doping on the thermoelectric properties of CaMnO3. Materials 11(10), 1807 (2018)

    Article  Google Scholar 

  24. Y. Zhu, C. Wang, H. Wang, W. Su, J. Liu, J. Li, Influence of Dy/Bi dual doping on thermoelectric performance of CaMnO3 ceramics. Mater. Chem. Phys. 144(3), 385–389 (2014)

    Article  CAS  Google Scholar 

  25. A. Sotelo, M. Depriester, M.A. Torres, A.H. Sahraoui, M.A. Madre, J.C. Diez, Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics. Ceram. Int. 44(11), 12697–12701 (2018)

    Article  CAS  Google Scholar 

  26. D.S. Raghav, S. Chauhan, H.K. Singh, G.D. Varma, Structure, magnetism and electrical transport in La1-x-yPryCaxMnO3 (y= 0.30, 0.35, 0.40; x= 0.40): consequences of the interplay between intrinsic ionic radius and extrinsic particle size. Mater. Chem. Phys. 258, 123900 (2021)

    Article  CAS  Google Scholar 

  27. R. Kabir, T. Zhang, R. Donelson, D. Wang, R. Tian, T.T. Tan, B. Gong, S. Li, Thermoelectric properties of Yb and Nb codoped CaMnO3. Physica Status Solidi (A). 211(5), 1200–1206 (2014)

    Article  CAS  Google Scholar 

  28. E. Suprayoga, W.B. Putri, K. Singsoog, S. Paengson, M.Y. Hanna, A.R. Nugraha, D.R. Munazat, B. Kurniawan, M. Nurhuda, T. Seetawan, E.H. Hasdeo, Investigation of electron and phonon transport in Bi-doped CaMnO3 for thermoelectric applications. Mater. Res. Bull. 141, 111359 (2021)

    Article  CAS  Google Scholar 

  29. M. Wolf, R. Hinterding, A. Feldhoff, High power factor vs high zT—A review of thermoelectric materials for high-temperature application. Entropy 21(11), 1058 (2019)

    Article  CAS  Google Scholar 

  30. T. Liu, J. Chen, M. Li, G. Han, C. Liu, D. Zhou, J. Zou, Z.G. Chen, L. Yang, Achieving enhanced thermoelectric performance of Ca1−x−yLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering. Chem. Eng. J. 408, 127364 (2021)

    Article  CAS  Google Scholar 

  31. P. Pant, H. Agarwal, S. Bharadwaj, O.N. Srivastava, M.A. Shaz, Relaxor ferroelectric phase transition and ac conduction in polycrystalline Gd0.55Ca0.45MnO3 at low temperature. Mater. Chem. Phys. 267, 124586 (2021)

    Article  CAS  Google Scholar 

  32. Y.H. Zhu, W.B. Su, J. Liu, Y.C. Zhou, J. Li, X. Zhang, Y. Du, C.L. Wang, Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram. Int. 41(1), 1535–1539 (2015)

    Article  CAS  Google Scholar 

  33. A. Azulay, M. Wahabi, Y. Natanzon, Y. Kauffmann, Y. Amouyal, Enhanced charge transport in Ca2MnO4-layered perovskites by point defect engineering. ACS Appl. Mater. Interfaces 12(44), 49768–49776 (2020)

    Article  CAS  Google Scholar 

  34. C.O. Romo-De-La-Cruz, Y. Chen, L. Liang, M. Williams, X. Song, Thermoelectric oxide ceramics outperforming single crystals enabled by dopant segregations. Chem. Mater. 32(22), 9730–9739 (2020)

    Article  CAS  Google Scholar 

  35. M. Bourouina, A. Krichene, R. Thaljaoui, M. Pękała, W. Boujelben, Effect of gadolinium doping on the structural and electrical properties of Pr0.5−xGdxSr0.5MnO3 (x= 0.0–0.1) manganites. J. Supercond. Novel Magn. 28, 2743–2750 (2015)

    Article  CAS  Google Scholar 

  36. T. Poojary, P.D. Babu, T. Sanil, M.D. Daivajna, Effect of gadolinium dopant on structural, magneto-transport, magnetic and thermo-power of Pr0.8Sr0.2MnO3. Solid State Commun. 275, 35–42 (2018)

    Article  CAS  Google Scholar 

  37. K.K. Liu, Z.Y. Liu, F.P. Zhang, J.X. Zhang, X.Y. Yang, J.W. Zhang, J.L. Shi, G. Ren, T.W. He, J.J. Duan, Improved thermoelectric performance in Pr and Sr Co-doped CaMnO3 materials. J. Alloys Compds. 808, 151476 (2019)

    Article  CAS  Google Scholar 

  38. G. Xiao, W. He, P. Chen, X. Wu, Effect of Nd-substitution on the structural, magnetic and magnetocaloric properties of La0.67-xNdxCa0.13Ba0.2MnO3 manganites. Physica B 564, 133–142 (2019)

    Article  CAS  Google Scholar 

  39. F. Aziz, M. Chandra, S. Das, M. Prajapat, K.R. Mavani, Structural and metamagnetic transitions in thin films of Ce-doped Pr0.5Ca0.5MnO3 manganites. Thin Solid Films 615, 338–344 (2016)

    Article  CAS  Google Scholar 

  40. P.D. Yen, N.T. Dung, T.D. Thanh, S.C. Yu, Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds. Curr. Appl. Phys. 18(11), 1280–1288 (2018)

    Article  Google Scholar 

  41. J. Lan, Y.H. Lin, H. Fang, A. Mei, C.W. Nan, Y. Liu, S. Xu, M. Peters, High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc. 93(8), 2121–2124 (2010)

    Article  CAS  Google Scholar 

  42. S. Zhao, J. Zheng, F. Jiang, Y. Song, M. Sun, X. Song, Co-precipitation synthesis and microwave absorption properties of CaMnO3 doped by La and Co. J. Mater. Sci.: Mater. Electron. 26, 8603–8608 (2015)

    CAS  Google Scholar 

  43. J. Chen, Q. Jin, J. Chao, Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Math. Probl. Eng. 2012, 1–6 (2012)

    Google Scholar 

  44. H.B. Huang, X.R. Huang, R.X. Li, T.C. Lim, W.P. Ding, Sound quality prediction of vehicle interior noise using deep belief networks. Appl. Acoust. 113, 149–161 (2016)

    Article  Google Scholar 

  45. E.M. Schmidt, Y.E. Kim, Learning emotion-based acoustic features with deep belief networks, In 2011 IEEE workshop on applications of signal processing to audio and acoustics (Waspaa). (IEEE, 2011), pp. 65–68.

  46. G. Dhiman, M. Garg, A. Nagar, V. Kumar, M. Dehghani, A novel algorithm for global optimization: rat swarm optimizer. J. Ambient. Intell. Humaniz. Comput. 12, 8457–8482 (2021)

    Article  Google Scholar 

  47. N.E.V. Aslan, Y.A. Cebeci, Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86(1–2), 90–97 (2007)

    Article  CAS  Google Scholar 

  48. H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, M. Saravanan, Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg. Nano-Met. Chem. 49(2), 33–43 (2019)

    Article  CAS  Google Scholar 

  49. D. Liu, C. Huang, J. Wang, H. Zhu, P. Yao, Z. Liu, Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box-Behnken design. Ceram. Int. 40(6), 7899–7908 (2014)

    Article  CAS  Google Scholar 

  50. Y. Feng, X. Jiang, E. Ghafari, B. Kucukgok, C. Zhang, I. Ferguson, N. Lu, Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater. 1, 114–126 (2018)

    Article  CAS  Google Scholar 

  51. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using box-Behnken response surface methodology. Catal. Lett. 149, 1186–1196 (2019)

    Article  CAS  Google Scholar 

  52. G.S. Hegde, A.N. Prabhu, Y.H. Gao, Y.K. Kuo, V.R. Reddy, Potential thermoelectric materials of indium and tellurium co-doped bismuth selenide single crystals grown by melt growth technique. J. Alloys Compds. 866, 158814 (2021)

    Article  CAS  Google Scholar 

  53. S. Kutluay, O. Baytar, O. Şahin, A. Arran, Optimization of process conditions for adsorption of methylene blue on formaldehyde-modified peanut shells using Box-Behnken experimental design and response surface methodology. Eur. J. Techn. (EJT) 10(1), 131–142 (2020)

    Article  Google Scholar 

Download references

Funding

No funding is provided for the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Digvijay Pandey.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors involved have agreed to participate in this submitted article.

Consent to publish

All the authors involved in this manuscript give full consent for publication of this submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, B.K., Pandey, D. Parametric optimization and prediction of enhanced thermoelectric performance in co-doped CaMnO3 using response surface methodology and neural network. J Mater Sci: Mater Electron 34, 1589 (2023). https://doi.org/10.1007/s10854-023-10954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10954-1

Navigation