Skip to main content
Log in

Structural, thermal and magnetic properties of orthoferrite holmium nanoparticles synthesized by a simple co-precipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, holmium orthoferrite (o-HoFeO3) nanoparticles were successfully synthesized by simple co-precipitation method without adding gelling organic polymers. Structures, morphologies, elemental composition, thermal, and magnetic properties of the product were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometer (VSM). After annealing the precursors at different temperatures for 60 min, nanocrystrals with orthorhombic perovskite structure were obtained. Crystallite size (DPXRD = 22.13–53.74 nm), particle size (DTEM/SEM = 20–60 nm), and lattice volume (V = 223.65–224.99 Å3) increased with the annealing temperature. The optimal annealing temperature for obtaining the single crystalline phase of o-HoFeO3 was ≥ 750 °C, and the o-HoFeO3 crystalline phase remained stable at temperatures ≥ 1050 °C. The synthesized o-HoFeO3 nanoparticles exhibited a uniform spherical shape, with a size of 20–60 nm, and exhibited the properties of a paramagnetic material at 300 K. Notably, the coercive force and residual magnetism of the synthesized material were much smaller than those reported in previous studies for similar materials. The experimental results in this work may provide fundamental support to the research and development of magnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Singh, J.Y. Rhee, S. Auluck, Electronic and magneto-optical properties of rare-earth orthoferrite RFeO3 (R = Y, Sm, Eu, Gd and Lu). J. Korean Phys. Soc. 53, 806–816 (2010). https://doi.org/10.3938/jkps.53.806

    Article  Google Scholar 

  2. J. Ding, X. Lu, H. Shu, J. Xie, H. Zhang, Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Su, Gd) photocatalyst. Mater. Sci. Eng. B 171, 31–34 (2010). https://doi.org/10.1016/j.mseb.2010.03.050

    Article  CAS  Google Scholar 

  3. T.V. Manh, Y. Pham, T.L. Phan, N.T. Dang, N. Tran, H.R. Park, B.W. Lee, Electronic structure and magnetocaloric effect of Sr-doped SmCoO3 perovskite. J. Electron. Mater. 5, 177–187 (2023). https://doi.org/10.1007/s11664-022-09943-7

    Article  CAS  Google Scholar 

  4. S.K. Sahu, S. Tanasescu, B. Scherrer, C. Marinnescu, A. Navrotsky, Energetics of lanthanide cobalt perovskites: LnCoO3−δ (Ln = La, Nd, Sm, Gd). J. Mater. Chem. A 38, 19490–19496 (2015). https://doi.org/10.1039/C5TA03655K

    Article  CAS  Google Scholar 

  5. B.K. Ostafiychuk, H.M. Kolkovska, I.P. Yaremily, B.I. Tachiy, P.I. Kolkovskyi, N.Y. Ivanichok, S.I. Yaremiy, Synthesis and electrochemical properties of LnMnO3 perovskite nanoparticles. Phys. Chem. Solid State 21, 219–226 (2020). https://doi.org/10.15330/pcss.21.2.219-226

    Article  CAS  Google Scholar 

  6. M. Escote, A.M.L. da Silva, J. Matos, R.F. Jardim, General properties of polycrystalline LnNiO3 (Ln = Pr, Nd, Sm) compounds prepared through different precursors. J. Solid State Chem. 151, 298–307 (2000). https://doi.org/10.1006/jssc.2000.8657

    Article  CAS  Google Scholar 

  7. Z. Yu, Y. Sun, W. Wei, L. Lu, X. Wang, Preparation of NdCrO3 nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. J. Therm. Anal. Cal. 97, 903–909 (2000). https://doi.org/10.1007/s10973-009-0091-7

    Article  CAS  Google Scholar 

  8. A.T. Nguyen, T.A. Nguyen, V.O. Mittova, H.D. Ngo, M.L.P. Le, D.Q. Nguyen, N.V.H. MittovaIYa, S. Hiroshi, H.T. Bui, T.L. Nguyen, Facile co-precipitation synthesis of NdFeO3 perovskite nanoparticles for lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 33, 19082–19092 (2022). https://doi.org/10.1007/s10854-022-08745-1

    Article  CAS  Google Scholar 

  9. L.C.P. Sonia, S.A. João, W. Alain, D. Mathieu, M.H. Delville, C.F.G.C. Geraldes, Synthesis and characterization of rare earth orthoferrite LnFeO3 nanoparticles for biomaging. Eur. J. Inorg. Chem. 31, 3570–3578 (2018). https://doi.org/10.1002/ejic.201800468

    Article  CAS  Google Scholar 

  10. A.T. Nguyen, W.G. Kidanu, V.O. Mittova, V.H. Nguyen, D.Q. Nguyen, M.L.P. Le, Mittova IYa, Kim IIT, Nguyen TL, Tailored HoFeO3–Ho2O3 hybrid perovskite nanocomposite as stable anode material for advanced lithium-ion storage. Inter. J. Ener. Res. 46, 2051–2063 (2021). https://doi.org/10.1002/er.7273

    Article  CAS  Google Scholar 

  11. K.O. Ogunniran, G. Murugadoss, R. Thangamuthu, P. Periasamy, Evaluation of nanostructured Nd0.7Co0.3FeO3 perovskite obtanied via hydrothermal method as anode mateiral for Li-ion battery. Mater. Chem. Phys. 248, 122944 (2020). https://doi.org/10.1016/j.matchemphys.2020.122944

    Article  CAS  Google Scholar 

  12. P. Tang, X. Xie, H. Chen, C. Lv, Y. Ding, Synthesis of nanoparticlate PrFeO3 by sol-gel method and its visible-light photocatalytic activity. Ferroelectrics 546, 181–187 (2019). https://doi.org/10.1080/00150193.2019.1592470

    Article  CAS  Google Scholar 

  13. C.O. Deniz, T. Ahmet, C. Erdal, Synthesis and characterizations of LaMnO3 perovskite powders uisng sol-gel method. J. Mater. Sci. Mater. Electron. 32, 15544–15562 (2021). https://doi.org/10.1007/s10854-021-06104-0

    Article  CAS  Google Scholar 

  14. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014). https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  CAS  Google Scholar 

  15. M.K. Mozhgan, M. Noroozifar, M. Yousefi, S. Jahani, Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method. Int. J. Nanosci. Nanotechnol. 9, 7–14 (2013)

    Google Scholar 

  16. M. Yousefi, S.S. Zeid, M.K. Mozhgan, Synthesis and characterization of nano-structured perovskite type neodymium orthoferrite NdFeO3. Curr. Chem. Lett. 6, 23–30 (2017). https://doi.org/10.5267/j.ccl.2016.10.002

    Article  Google Scholar 

  17. M. Nakhael, D.S. Khoshnoud, Structural, magnetic, and electrical properties of RFeO3 (R = Dy, Ho, Yb & Lu) compounds. J. Mater. Sci. Mater. Electron. 32, 14286–14300 (2021). https://doi.org/10.1007/s10854-021-05992-6

    Article  CAS  Google Scholar 

  18. Z. Habib, K. Majid, M. Ikram, K. Sultan, Influence of Ni substitution at B-site for Fe3+ ions on morphological, optical, and magnetic properties of HoFeO3 ceramics. Appl. Phys. Mater. Sci. Process 122, 550 (2016). https://doi.org/10.1007/s00339-016-0082-z

    Article  CAS  Google Scholar 

  19. T.K.C. Nguyen, A.T. Nguyen, V.O. Mittova, H.D. Chau, T.L. Nguyen, Mittova IYa, Bui XV, Effect of annealing temperature and cadmium doping on structure and magnetic properties of neodymium orthoferrite nanoparticles synthesized by a simple co-precipitation method. Process Appl. Ceram. 16, 321–327 (2022). https://doi.org/10.2298/PAC2204321N

    Article  CAS  Google Scholar 

  20. H.D.T. Pham, L.T.T. Nguyen, V.O. Mittova, H.D. Chau, I Ya. Mittova, A.T. Nguyen, X.V. Bui, Structural, optical and magnetic properties of Sr and Ni co-doped YFeO3 nanoparticles prepared by simple co-precipitation method. J. Mater. Sci. Mater. Electron. 33, 14356–14367 (2022). https://doi.org/10.1007/s10854-022-08360-0

    Article  CAS  Google Scholar 

  21. T.H.D. Pham, H.D. Chau, A.T. Nguyen, Cd-doped NdFeO3 nanoparticles: synthesis and optical properties study. J. Mater. Sci. Mater. Electron. 33, 3546–3555 (2022). https://doi.org/10.1007/s10854-021-07546-2

    Article  CAS  Google Scholar 

  22. T.H.D. Pham, A.T. Nguyen, X.V. Bui, Optical and magnetic characteristics of LaFeO3 nanoparticles synthesized by simple co-precipitation method using ethanol. Asian J. Chem. 34, 1279–1283 (2022). https://doi.org/10.14233/ajchem.2022.23606

    Article  CAS  Google Scholar 

  23. A.T. Nguyen, I. Y.A. Mittova, O.V. Almjasheva, S.A. Kirillova, V.V. Gusarov, Influence of the preparation condition on the size and morphology of nanocrystalline lanthanum orthoferrite. Glass Phys. Chem. 34, 756–761 (2008). https://doi.org/10.1134/S1087659608060138

    Article  CAS  Google Scholar 

  24. C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, 2nd edn. (Prentice Hall, Pearson, Hoboken, 2005)

    Google Scholar 

  25. P. Caro, M. Lemaitre, M. Blassé, Hydroxycarbonates deterres rares Ln2(CO3)x(OH)2(3–x) nH2O. C.R. Seances. Acad. Sci. Ser. C. 269, 687 (1969)

    CAS  Google Scholar 

  26. T.K.C. Nguyen, A.T. Nguyen, X.V. Bui, Optical and magnetic properties of YFeO3 nanoparticles synthesized by a co-precipitation method at high temperature. Chem Papers 76, 923–930 (2022). https://doi.org/10.1007/s11696-021-01913-3

    Article  CAS  Google Scholar 

  27. N. Imanaka, Physical and chemical properties of rare earth oxides, binary rare earth oxides (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  28. C. Sasikala, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Henini, Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical and magnetic properties. J Alloys Compd 712, 870–877 (2017). https://doi.org/10.1016/j.jallcom.2017.04.133

    Article  CAS  Google Scholar 

  29. A.T. Nguyen, T.T.L. Nguyen, X.V. Bui, T.H.D. Nguyen, D.H. Lieu, T.M.L. Le, V. Pham, Optical and magnetic properties of HoFeO3 nanocrystals prepared by a simple co-precipitation method using ethanol. J. Alloys Compd. 834, 155098 (2020). https://doi.org/10.1016/j.jallcom.2020.155098

    Article  CAS  Google Scholar 

  30. Y. Albadi, A.A. Sirotkin, V.G. Semenov, R.S. Abiev, V.I. Popkov, Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor. Rus Chem. Bull. Inter. Ed. 69, 1290–1295 (2020). https://doi.org/10.1007/s11172-020-2900-x

    Article  CAS  Google Scholar 

  31. Y. Cao, M. Xiang, W. Zhao, G. Wang, Z. Feng, B. Kang, A. Stroppa, J. Zhang, W. Ren, S. Cao, Magnetic phase transition and giant anisotropic magnetic entrpy change in TbFeO3 single crystal. J. Appl. Phys. 119, 063904 (2016). https://doi.org/10.1063/1.4941105

    Article  CAS  Google Scholar 

  32. Y. Moriya, New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960). https://doi.org/10.1103/PhysRevLett.4.228

    Article  CAS  Google Scholar 

  33. A. Jaiswal, R. Das, S. Adyanthaya, P. Poddar, Surface effects on morin transition, exchange bias, and enchanced spin reorientation in chemically synthesized DyFeO3 nanoparticles. J. Phys. Chem. C 115, 2954–2960 (2011). https://doi.org/10.1021/jp109313w

    Article  CAS  Google Scholar 

  34. M. Johnsson, P. Lemmens, Crystallography and chemistry of perovskites, 1st edn. (Wiley, Hoboken, 2007), pp.1–11

    Google Scholar 

  35. B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (Wiley, Canada, 2009)

    Google Scholar 

  36. J. Su, X. Lu, C. Zhang, J. Zhang, H. Sun, C. Ju, Z. Wang, K. Min, F. Huang, J. Zhu, Study on dielectric and magnetic properties of Ho3Fe5O12 ceramics. Phys. B 407, 485–488 (2012). https://doi.org/10.1016/j.physb.2011.11.020

    Article  CAS  Google Scholar 

  37. O. Opuchovic, A. Beganskiene, A. Karreiva, Sol-gel derived Tb3Fe5O12 and Y3Fe5O12 garnets: synthesis, phase purity, micro-structure and improved design of morphology. J. Alloys Compd. 647, 189–197 (2015). https://doi.org/10.1016/j.jallcom.2015.05.169

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank Sai Gon University, Vietnam for the financial support, through Grant No. CSA 2022-12.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, and formal analysis, Nguyen AT, Le TTT, Tran GTL, and Tomina EV; validation, Bui XV, Vo QM, and Le HP; writing–original draft preparation, Nguyen AT, Bui XV, and Le TTT; writing–review and editing, Bui XV, Tomina EV, and Nguyen AT. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bui Xuan Vuong.

Ethics declarations

Conflict of interest

The authors maintain that they have no conflict of interest to be described in this communication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuy, L.T.T., Loan, T.G.T., Tomina, E.V. et al. Structural, thermal and magnetic properties of orthoferrite holmium nanoparticles synthesized by a simple co-precipitation method. J Mater Sci: Mater Electron 34, 1499 (2023). https://doi.org/10.1007/s10854-023-10923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10923-8

Navigation