Skip to main content
Log in

Crystallographic, structural, optical, and dielectric properties of aniline and aniline halide imprinted hydrogels for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study examines the availability of aniline and aniline halide imprinted hydrogels for technological applications through crystallographic, structural, optical, and dielectric studies. Their optical band gap and ultraviolet–visible (UV–Vis) absorption spectra have been performed in the wavelength range of 190–900 nm. The dielectric properties, energy loss tangent/ dissipation factor (\(tan\delta\)), and complex electric modulus were characterized at room temperature and a frequency range of 100 Hz to 100 MHz. The results suggest that the complex dielectric constant and modulus are related to Kroop’s theory, Brownian motion in viscoelastic systems, and Maxwell–Wagner theory. Conductivity parameters and negative s-parameter values were obtained, providing insight into the conductivity mechanism of the samples. The Cole-Davidson plots of the complex dielectric constant and the Cole-Davidson plots adapted to Smith Chart diagrams were obtained to observe the sufficiency of the samples in electronic circuit applications. Overall, the study provides a detailed analysis of the dielectric, morphological, and optical properties of aniline and aniline halide imprinted hydrogels, demonstrating their potential for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors are unable or have chosen not to specify which data has been used.

References

  1. Y. H. Lin, J. M. Yang, S. C. Jeng, Y. R. Lin, C. C. Liao, Flexible and reflective polarizer-free liquid crystal displays using dye-doped liquid crystal gels. In: Emerging Liquid Crystal Technologies III. International Society for Optics and Photonics 691108 (2008) https://doi.org/10.1117/12.762649.

  2. Y.H. Lin, J.M. Yang, Y.R. Lin, S.C. Jeng, C.C. Liao, A polarizer-free flexible and reflective electro-optical switch using dye-doped liquid crystal gels. Opt. Express 16(3), 1777–1785 (2008). https://doi.org/10.1364/OE.16.001777

    Article  CAS  Google Scholar 

  3. M. Sheng, J. Li, X. Jiang, C. Wang, J. Li, L. Zhang, S. Fu, Biomimetic Solid-Liquid transition structural dye-doped liquid crystal/phase-change-material microcapsules designed for wearable bistable electrochromic fabric. ACS Appl. Mater. Interfaces 13(28), 33282–33290 (2021). https://doi.org/10.1021/acsami.1c08135

    Article  CAS  Google Scholar 

  4. D. Von Tumacder, Z. Morávková, I.M. Minisy, J. Hromádková, P. Bober, Electropolymerized polypyrrole/safranin-O films: capacitance enhancement. Polymer 230, 124099 (2021). https://doi.org/10.1016/j.polymer.2021.124099

    Article  CAS  Google Scholar 

  5. E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015). https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  6. A. Ahsan, W.X. Tian, M.A. Farooq, D.H. Khan, An overview of hydrogels and their role in transdermal drug delivery. Int. J. Polym. Mater. Polym. Biomater. 70(8), 574–584 (2021). https://doi.org/10.1080/00914037.2020.1740989

    Article  CAS  Google Scholar 

  7. D.M. Nascimento, Y.L. Nunes, M.C. Figueirêdo, H.M. de Azeredo, F.A. Aouada, J.P. Feitosa, A. Dufresne, Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem. 20(11), 2428–2448 (2018). https://doi.org/10.1039/C8GC00205C

    Article  CAS  Google Scholar 

  8. Y. Ohya, Temperature-responsive biodegradable injectable polymer systems with conveniently controllable properties. Polym. J. 51(10), 997–1005 (2019). https://doi.org/10.1038/s41428-019-0217-0

    Article  CAS  Google Scholar 

  9. I.N. Savina, G.C. Ingavle, A.B. Cundy, S.V. Mikhalovsky, A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Sci. Rep. 6(1), 1–9 (2016). https://doi.org/10.1038/srep21154

    Article  CAS  Google Scholar 

  10. A.Z. Unal, L.W. Jennifer, Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug. Chem. 31(10), 2253–2271 (2020). https://doi.org/10.1021/acs.bioconjchem.0c00270

    Article  CAS  Google Scholar 

  11. L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37(8), 1473–1481 (2008). https://doi.org/10.1039/B713009K

    Article  CAS  Google Scholar 

  12. L. Ding, D. Jani, J. Linhardt, J.F. Künzler, S. Pawar, G. Labenski, T. Smith, W.H. Knox, Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers. Opt. Express 16, 21914–21921 (2008). https://doi.org/10.1364/OE.16.021914

    Article  CAS  Google Scholar 

  13. G.A. Mahmoud, S.F. Mohamed, H.M. Hassan, Removal of methylene blue dye using biodegradable hydrogel and reusing in a secondary adsorption process. Desalin. Water Treat. 54, 2765–2776 (2014). https://doi.org/10.1080/19443994.2014.905978

    Article  CAS  Google Scholar 

  14. J. Bisquert, L. Bertoluzzi, I. Mora-Sero, G. Garcia-Belmonte, Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination. J. Phys. Chem. C 118(33), 18983–18991 (2014)

    Article  CAS  Google Scholar 

  15. R. Coşkun, O. Yalçın, M. Okutan, M. Öztürk, Impedance properties and comparison effects of different dose safranin doped hydrogels. J. Non-Cryst. Solids 460, 153–160 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.01.034

    Article  CAS  Google Scholar 

  16. R. Coşkun, M. Okutan, O. Yalçın, A. Kösemen, Electric and magnetic properties of hydrogels doped with Cu ions. Acta Phys. Pol. A 122, 683–687 (2012). https://doi.org/10.12693/APhysPolA.122.683

    Article  Google Scholar 

  17. A.E. Kennelly, Impedance. Trans. Am. Inst. Electr. Eng. 10, 172–232 (1893). https://doi.org/10.1109/T-AIEE.1893.4768008

    Article  Google Scholar 

  18. M. Okutan, R. Coşkun, M. Öztürk, O. Yalçın, Dielectric properties of rhodamine-B and metal doped hydrogels. Physica B. 457, 5–11 (2015). https://doi.org/10.1016/j.physb.2014.09.010

    Article  CAS  Google Scholar 

  19. M. Okutan, R. Coşkun, M. Öztürk, C. Özsucu, O. Yalçın, Optic and dielectric properties of different amount NiFe2O4 nanoparticles loaded hydrogels: synthetic circuits applications. J. Solid State Sci. Technol. 7, N101–N109 (2018). https://doi.org/10.1149/2.0131808jss

    Article  CAS  Google Scholar 

  20. M. Öztürk, R. Coşkun, M. Okutan, O. Yalçın, Origin of the synthetic circuits and the Brownian motion in stretchable crystal violet doped and biocompatible composite hydrogels. J. Mol. Liq. 249, 211–218 (2018). https://doi.org/10.1016/j.molliq.2017.11.008

    Article  CAS  Google Scholar 

  21. M. Öztürk, M. Okutan, R. Coşkun, B. Çolak, O. Yalçın, Evaluation of the effect of dose change of Fe3O4 nanoparticles on electrochemical biosensor compatibility using hydrogels as an experimental living organism model. J. Mol. Liq. 322, 114574 (2021). https://doi.org/10.1016/j.molliq.2020.114574

    Article  CAS  Google Scholar 

  22. O. Yalçın, M. Öztürk, M. Okutan, Öncan. Coşkun, M., Determination of the effects of the production process for the calcite doped hydrogels on electronic circuit applications. Physica B 621, 413282 (2021). https://doi.org/10.1016/j.physb.2021.413282

    Article  CAS  Google Scholar 

  23. H. Mazzer, L. Cardozo-Filho, P.R.G. Fernandes, Broadband dielectric spectroscopy of protic ethylammonium-based ionic liquids synthetized with different anions. J. Mol. Liq. 269, 556–563 (2018). https://doi.org/10.1016/j.molliq.2018.08.076

    Article  CAS  Google Scholar 

  24. B.K.P. Scaife, Principles of Dielectric, vol. 45 (Clarendon Press, Oxford p, 1989), p.448

    Google Scholar 

  25. R. Coşkun, M. Okutan, M. Öztürk, O. Yalçın, Experimental model to describe the dielectric response of different dye and nanoparticles doped hydrogels for biological cell membranes and biological systems. J. Mol. Liq. 296, 112072 (2019). https://doi.org/10.1016/j.molliq.2019.112072

    Article  CAS  Google Scholar 

  26. J.R. Macdonald, Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992). https://doi.org/10.1007/BF02368532

    Article  CAS  Google Scholar 

  27. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric and electrical properties of plasticized polymer nanocomposite electrolytes. Mater. Chem. Phys. 115(2–3), 557–561 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.008

    Article  CAS  Google Scholar 

  28. O. Yalçın, R. Coşkun, M. Okutan, M. Öztürk, Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels. J. Phys. Chem. B. 117, 8931–8938 (2013). https://doi.org/10.1021/jp402219t

    Article  CAS  Google Scholar 

  29. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967), pp.108–111

    Google Scholar 

  30. Jr. Starkweather, W. Howard, P. Avakian, Conductivity and the electric modulus in polymers. J. Polym. Sci., Part B: Polym. Phys. 30(6), 637–641 (1992). https://doi.org/10.1002/polb.1992.090300614

    Article  CAS  Google Scholar 

  31. S. Capaccioli, M. Lucchesi, P.A. Rolla, G. Ruggeri, Dielectric response analysis of a conducting polymer dominated by the hopping charge transport. J. Phys. Condens. Matter. 10, 5595–5617 (1998). https://doi.org/10.1088/0953-8984/10/25/011

    Article  CAS  Google Scholar 

  32. G.R. Olhoeft, Low frequency electrical properties. Geophysics 50, 2492–2503 (1985). https://doi.org/10.1190/1.1441880

    Article  Google Scholar 

  33. B.M. Greenhoe, M.K. Hassan, J.S. Wiggins, K.A. Mauritz, Universal power law behavior of the AC conductivity versus frequency of agglomerate morphologies in conductive carbon nanotube-reinforced epoxy networks. J. Polym. Sci. Part B: Polym. Phys. 54(19), 1918–1923 (2016). https://doi.org/10.1002/polb.24121

    Article  CAS  Google Scholar 

  34. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  35. T. Owen, Fundamentals of UV–Visible Spectroscopy (Hewlett-Packard Company, Germany, 1996), pp.14–25

    Google Scholar 

  36. J.N. Ansari, S. Khasim, A. Parveen, O.A. Al-Hartomy, Z. Khattarib, N. Badi, A.S. Roy, Synthesis, characterization, dielectric and rectification properties of PANI/Nd2O3:Al2O3 nanocomposites. Polym. Adv. Technol. 27, 1064–1071 (2016). https://doi.org/10.1002/pat.3771

    Article  CAS  Google Scholar 

  37. B.L. Prabhavathi Devi, K. Vijaya Lakshmi, K.N. Gangadhar, R.B. Prasad, P.S. Sai Prasad, B. Jagannadh, P.P. Kundu, G. Kumari, C. Narayana, Novel heterogeneous SO3Na-Carbon transesterification catalyst for the production of biodiesel. Chem. Select 2, 1925–1931 (2017). https://doi.org/10.1002/slct.201601767

    Article  CAS  Google Scholar 

  38. B. Unal, M. Almessiere, Y. Slimani, A. Baykal, A.V. Trukhanov, I. Ercan, The conductivity and dielectric properties of neobium substituted Sr-hexaferrites. Nanomaterials 9(8), 1168 (2019). https://doi.org/10.3390/nano9081168

    Article  CAS  Google Scholar 

  39. Y. Zhang, Z. Yang, B. Wen, An ingenious strategy to construct helical structure with excellent electromagnetic shielding performance. Adv. Mater. Interfaces 6(11), 1900375 (2019). https://doi.org/10.1002/admi.201900375

    Article  CAS  Google Scholar 

  40. Z. Yang, Y. Zhang, B. Wen, Enhanced electromagnetic interference shielding capability in bamboo fiber@ polyaniline composites through microwave reflection cavity design. Compos. Sci. Technol. 178, 41–49 (2019). https://doi.org/10.1016/j.compscitech.2019.04.023

    Article  CAS  Google Scholar 

  41. P. Das, S. Yuran, J. Yan, P.S. Lee, M. Reches, Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chem. Commun. 51(25), 5432–5435 (2015). https://doi.org/10.1039/C4CC07671K

    Article  CAS  Google Scholar 

  42. F.L. Martínez, M. Toledano-Luque, J.J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, I. Mártil, Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering. J. Phys. D: Appl. Phys. 40(17), 5256 (2007). https://doi.org/10.1088/0022-3727/40/17/037

    Article  CAS  Google Scholar 

  43. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  44. J. Tauc, Optical Properties of Amorphous Semiconductors (Springer, Boston, 1974). https://doi.org/10.1007/978-1-4615-8705-7_4

    Book  Google Scholar 

  45. E. Sheha, H. Khoder, T.S. Shanap, M.G. El-Shaarawy, M.K. El Mansy, Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik 123, 1161–1166 (2012). https://doi.org/10.1016/j.ijleo.2011.06.066

    Article  CAS  Google Scholar 

  46. R.J. Sengwa, S. Sankhla, Dielectric dispersion study of coexisting phases of aqueous polymeric solution: poly (vinyl alcohol)+ poly (vinyl pyrrolidone) two-phase systems. Polymer 48, 2737 (2007). https://doi.org/10.1016/j.polymer.2007.03.030

    Article  CAS  Google Scholar 

  47. R. Ranjan, N. Kumar, B. Behera, R.N.P. Choudhary, Investigations of impedance and electric modulus properties of Pb1-xSmx(Zr0.45Ti0.55)1–x/4O3 ceramics. Adv. Mater. Lett. 5, 138–142 (2014). https://doi.org/10.5185/amlett.2013.fdm.52

    Article  CAS  Google Scholar 

  48. C. Arbizzani, M.C. Gallazzi, M. Mastragostino, M. Rossi, F. Soavi, Capacitance and cycling stability of poly(alkoxythiophene) derivative electrodes. Electrochem. Commun. 3, 16–19 (2001). https://doi.org/10.1016/S1388-2481(00)00139-9

    Article  CAS  Google Scholar 

  49. M. Okutan, R. Coşkun, O. Yalçın, A.C. Babuçoğlu, A. Demir, Investigation of the dielectric and optic properties of rosehip seed extract loaded hydrogels. J. Mol. Struct. 1274, 134480 (2023). https://doi.org/10.1016/j.molstruc.2022.134480

    Article  CAS  Google Scholar 

  50. Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020). https://doi.org/10.1016/j.cej.2020.124433

    Article  CAS  Google Scholar 

  51. C. Wang, H. Gao, D. Liang, S. Liu, H. Zhang, H. Guan, Y. Zhang, Effective fabrication of flexible nickel chains/acrylate composite pressure-sensitive adhesives with layered structure for tunable electromagnetic interference shielding. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1016/j.cej.2020.124433

    Article  Google Scholar 

  52. H. Gao, C. Wang, Z. Yang, Y. Zhang, 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Compos. Sci. Technol. 213, 108896 (2021). https://doi.org/10.1016/j.compscitech.2021.108896

    Article  CAS  Google Scholar 

  53. M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4, 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

    Article  CAS  Google Scholar 

  54. P. Horowitz, W. Hill, The Art of Electronics, 3rd edn. (Cambridge University Press, New York, 1989)

    Google Scholar 

  55. I. Kanungo, N.N. Fathima, R.R. Jonnalagadda, B.U. Nair, Chemical, elucidation of hydration dynamics of locust bean gum–collagencomposites by impedance and thermoporometry. Carbohydr. Polym. 103, 250–260 (2014). https://doi.org/10.1016/j.carbpol.2013.12.051

    Article  CAS  Google Scholar 

  56. M. Aureli, M. Porfiri, Effect of electrode surface roughness on the electrical impedance of ionic polymer–metal composites. Smart Mater. Struct. 21, 105030 (2012). https://doi.org/10.1088/0964-1726/21/10/105030

    Article  CAS  Google Scholar 

  57. P.R. Deepthi, A. Sukhdev, P.M. Kumar, J. Shanthi, B.C. Hemaraju, Growth and impedance analysis of pure TGAc and dye doped TGAc crystals-enhanced dielectric permittivity for energy-storage devices. SN Appl. Sci. 2, 1493 (2020). https://doi.org/10.1007/s42452-020-03295-9

    Article  CAS  Google Scholar 

  58. P. Hedvig, Dielectric Spectroscopy of Polymers, 1st edn. (Adam Hilger Ltd, Bristol, 1977)

    Google Scholar 

  59. P.B. Ishai, M.S. Talary, A. Caduff, E. Levy, Y. Feldman, Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 24, 102001 (2013). https://doi.org/10.1088/0957-0233/24/10/102001

    Article  CAS  Google Scholar 

  60. A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallée, B. Yangui, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D: Appl. Phys. (2013). https://doi.org/10.1088/0022-3727/46/6/065308

    Article  Google Scholar 

  61. O. Gürbüz, A. Gelir, İ Erden, Y. Fırat, M. Okutan, Role of ion conducting polymeric electrolyte in suppressing deterioration of cathode electrodes in dye-sensitized solar cells. Dyes Pigm. 134, 269–275 (2016). https://doi.org/10.1016/j.dyepig.2016.07.024

    Article  CAS  Google Scholar 

  62. M. Okutan, R. Coşkun, M. Öztürk, O. Yalçın, C. Toker, Equivalent circuit properties of organic food extracts doped hydrogels and their applications in bioelectronics. J. Mol. Liq. 337, 116401 (2021). https://doi.org/10.1016/j.molliq.2021.116401

    Article  CAS  Google Scholar 

  63. S. Pokhriyal, S. Biswas, Doping dependent high-frequency dielectric properties of Hf1-xTixO2 nanoparticles. Mater. Today 3(6), 1311–1319 (2016). https://doi.org/10.1016/j.matpr.2016.04.009

    Article  Google Scholar 

  64. P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang, B. Ouyang, R. Che, Synergistic dielectric–magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Func. Mater. 33(13), 2211298 (2023). https://doi.org/10.1002/adfm.202211298

    Article  CAS  Google Scholar 

  65. P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang, X. Liu, R. Che, Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Func. Mater. 32(33), 2202588 (2022). https://doi.org/10.1002/adfm.202202588

    Article  CAS  Google Scholar 

  66. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Func. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.20210281

    Article  CAS  Google Scholar 

  67. J. Chen, Y. Wang, Y. Liu, Y. Tan, J. Zhang, P. Liu, J. Kong, Fabrication of macroporous magnetic carbon fibers via the cooperative etching-electrospinning technology toward ultra-light microwave absorption. Carbon 208, 82–91 (2023). https://doi.org/10.1016/j.carbon.2023.03.043

    Article  CAS  Google Scholar 

  68. Z. Yang, S. Ito, N. Hirai, Y. Ohki, Numerical evaluation of complex permittivity of silicone rubber based on Jonscher’s law. IEEJ Trans. Electr. Electron. Eng. 15(5), 658–662 (2020). https://doi.org/10.1002/tee.23100

    Article  CAS  Google Scholar 

  69. R. Coşkun, O. Yalçın, M. Okutan, Investigation of capacitors and electrical circuit elements performance of magnetic biocomposites prepared by using the hemp biomass. Mater. Chem. Phys. 296, 127171 (2023). https://doi.org/10.1016/j.matchemphys.2022.127171

    Article  CAS  Google Scholar 

  70. S. Devesa, M.P. Graça, L.C. Costa, Dielectric behaviour and electrical conductivity of α-BiNbO4 and β-BiNbO4 ceramics. Micro 2, 549–563 (2022). https://doi.org/10.3390/micro2040036

    Article  Google Scholar 

  71. G.G. Raju, Dielectric loss and relaxation—I, in Dielectrics in Electric Fields. (CRC Press, Boca Raton, 2017), pp.103–156

    Google Scholar 

  72. R.R. Nigmatullin, Y.E. Ryabov, Cole-Davidson dielectric relaxation as a self-similar relaxation process. Phys. Solid State. 39(1), 87–90 (1997). https://doi.org/10.1134/1.1129804

    Article  Google Scholar 

  73. R.M. Hill, L.A. Dissado, Debye and non-Debye relaxation. J. Phys. C: Solid State Phys. 18(19), 3829 (1985)

    Article  CAS  Google Scholar 

  74. Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9(1), 809–818 (2017). https://doi.org/10.1021/acsami.6b11989

    Article  CAS  Google Scholar 

  75. Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan, J. Xu, Z. Zhang, Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. A: Appl. Sci. Manuf. 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

OY: Writing—original draft, Investigation, RC: Data curation, Material production. MO: Methodology, Data curation, Visualization, MÖ: Writing—original draft, Visualization, GY: Visualization, Methodology.

Corresponding author

Correspondence to Orhan Yalçın.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalçın, O., Coşkun, R., Okutan, M. et al. Crystallographic, structural, optical, and dielectric properties of aniline and aniline halide imprinted hydrogels for optoelectronic applications. J Mater Sci: Mater Electron 34, 1608 (2023). https://doi.org/10.1007/s10854-023-10915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10915-8

Navigation