Skip to main content
Log in

Robust deposition of conductive polymer on waste textile assisted by vapor polymerization for flexible zinc-ion hybrid capacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible energy storage devices have been applied more and more in recent years, such as wearable electronic products, folding mobile phones, and so on. In this study, through the use of waste face mask (WFM) unique three-layer structure, designed a zinc-ion hybrid capacitor (ZHC), the outer layer of WFM through the vapor phase polymerization method on the surface of WFM uniformly covered with a layer of polypyrrole (PPy), to enhance the conductivity of the material and improve the surface topography. The loading of PPy is then increased by electrodeposition and dopants are introduced to further improve its electrochemical properties. It improves the problem that the conductivity of the active material becomes poor with increasing polymerization time and cannot continue to grow so that the electrochemical and mechanical properties of the electrode can be effectively strengthened. The other pole also through the way of electrodeposition on the surface of Zn deposition. ZHC is assembled using ZnSO4/gelatin as the electrolyte and WFM inner layer as the separator. The assembled ZHC has excellent electrochemical performance, with a mass-specific capacity of 121.5 mAh g−1 at 0.1 A g−1 and an energy density of 97.6 Wh kg−1 at 0.1 A g−1. In addition, the capacity retention rate remains 77.1% after 10,000 charge-discharge cycles. The assembled ZHC allows a small fan or digital watch to function properly. These results indicate that the prepared ZHC can be widely used in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. K. Keum, J.W. Kim, S.Y. Hong, J.G. Son, S.S. Lee, J.S. Ha, Adv. Mater. 32, 2002180 (2020). https://doi.org/10.1002/adma.202002180

    Article  CAS  Google Scholar 

  2. L.B. Dong, W. Yang, W. Yang, H. Tian, Y.F. Huang, X.L. Wang, C.J. Xu, C.Y. Wang, F.Y. Kang, G.X. Wang, Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355

    Article  CAS  Google Scholar 

  3. T. Lv, M.X. Liu, D.Z. Zhu, L.H. Gan, T. Chen, Adv. Mater. 30, 1705489 (2018). https://doi.org/10.1002/adma.201705489

    Article  CAS  Google Scholar 

  4. L.Y. Yu, L.F. Hu, B. Anasori, Y.T. Liu, Q.Z. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 3, 1597 (2018). https://doi.org/10.1021/acsenergylett.8b00718

    Article  CAS  Google Scholar 

  5. J. Zhang, Q.Y. Dou, C. Yang, L.M. Zang, X.B. Yan, J. Mater. Chem. A 11, 3632 (2023). https://doi.org/10.1039/D2TA09357J

    Article  CAS  Google Scholar 

  6. F. Li, Y.L. Liu, G.G. Wang, S.Y. Zhang, D.Q. Zhao, K. Fang, H.Y. Zhang, H.Y. Yang, Chem. Eng. J. 435, 135052 (2022). https://doi.org/10.1016/j.cej.2022.135052

    Article  CAS  Google Scholar 

  7. M. Stolar, C. Reus, T. Baumgartner, Adv. Energy Mater. 6, 1600944 (2016). https://doi.org/10.1002/aenm.201600944

    Article  CAS  Google Scholar 

  8. Y. Li, P.F. Lu, P. Shang, L.S. Wu, X. Wang, Y.F. Dong, R.H. He, Z.S. Wu, J. Energy Chem. 56, 404 (2021). https://doi.org/10.1016/j.jechem.2020.08.005

    Article  CAS  Google Scholar 

  9. J. Li, L. Yu, W.T. Wang, X.Y. He, G.R. Wang, R. Liu, X.Y. Ma, G.Q. Zhang, J. Mater. Chem. A 10, 9355 (2022). https://doi.org/10.1039/D1TA10677E

    Article  CAS  Google Scholar 

  10. Z.W. Li, Y.F. An, S.Y. Dong, C.J. Chen, L.Y. Wu, Y. Sun, X.G. Zhang, Energy Stor. Mater. 31, 252 (2020). https://doi.org/10.1016/j.ensm.2020.06.014

    Article  Google Scholar 

  11. Q.Y. Liu, H.Z. Zhang, J.H. Xie, X.Q. Liu, X.H. Lu, Carbon Energy 2, 521 (2020). https://doi.org/10.1002/cey2.69

    Article  CAS  Google Scholar 

  12. L. Wen, Y.A. Wu, S.L. Wang, J.J. Shi, Q.X. Zhang, B.T. Zhao, Q. Wang, C.J. Zhu, Z.Y. Liu, Y.F. Zheng, J. Su, Y.H. Gao, Nano Energy. 93, 106896 (2022). https://doi.org/10.1016/j.nanoen.2021.106896

    Article  CAS  Google Scholar 

  13. Z.W. Li, D.H. Chen, Y.F. An, C.L. Chen, L.Y. Wu, Z.J. Chen, Y. Sun, X.G. Zhang, Energy Stor. Mater. 28, 307 (2020). https://doi.org/10.1016/j.ensm.2020.01.028

    Article  CAS  Google Scholar 

  14. J.N. Hao, J. Long, B. Li, X.L. Li, S.L. Zhang, F.H. Yang, X.H. Zeng, Z.H. Yang, W.K. Pang, Z.P. Guo, Adv. Funct. Mater. 29, 1903605 (2019). https://doi.org/10.1002/adfm.201903605

    Article  CAS  Google Scholar 

  15. S.M. Chen, L.T. Ma, K. Zhang, M. Kamruzzaman, C.Y. Zhi, J.A. Zapien, J. Mater. Chem. A 7, 7784 (2019). https://doi.org/10.1039/c9ta00733d

    Article  CAS  Google Scholar 

  16. P. Shang, M. Liu, Y.Y. Mei, Y.H. Liu, L.S. Wu, Y.F. Dong, Z.B. Zhao, J.S. Qiu, Small. 18, 2108057 (2022). https://doi.org/10.1002/smll.202108057

    Article  CAS  Google Scholar 

  17. Y. Liu, S.H. Zheng, J.X. Ma, X. Wang, L.Z. Zhang, P. Das, K. Wang, Z.S. Wu, Adv. Electron. Mater. 12, 2200341 (2022). https://doi.org/10.1002/aenm.202200341

    Article  CAS  Google Scholar 

  18. F.Z. Cui, Z.C. Liu, D.L. Ma, L.L. Liu, T. Huang, P.P. Zhang, D.M. Tan, F.X. Wang, G.F. Jiang, Y.P. Wu, Chem. Eng. J. 405, 127038 (2021). https://doi.org/10.1016/j.cej.2020.127038

    Article  CAS  Google Scholar 

  19. J.J. Yao, F.Z. Li, R.Y. Zhou, C.C. Guo, X.R. Liu, Y.R. Zhu, Chin. Chem. Lett. (2023). https://doi.org/10.1016/j.cclet.2023.108354

    Article  Google Scholar 

  20. H. Tang, W.H. Chen, N. Li, Z.L. Hu, L. Xiao, Y.J. Xie, L.J. Xi, L. Ni, Y.R. Zhou, Energy Stor. Mater. 48, 335 (2022). https://doi.org/10.1016/j.cclet.2023.108354

    Article  Google Scholar 

  21. J.J. Yao, C. Liu, J.Y. Li, Z.L. Hu, R.Y. Zhou, C.C. Guo, X.R. Liu, F.F. Yang, Y.R. Zhu, Rare Met. (2023). https://doi.org/10.1007/s12598-023-02265-5

    Article  Google Scholar 

  22. G.Q. Sun, H.S. Yang, G.F. Zhang, J. Gao, X.T. Jin, Y. Zhao, L. Jiang, L.T. Qu, Energy Environ. Sci. 11, 3367 (2018). https://doi.org/10.1039/C8EE02567C

    Article  CAS  Google Scholar 

  23. G.H. An, J. Hong, S. Pak, Y. Cho, S. Lee, B. Hou, S. Cha, Adv. Electron. Mater. 10, 202070010 (2020). https://doi.org/10.1002/aenm.202070010

    Article  CAS  Google Scholar 

  24. P.P. Zhang, Y. Li, G. Wang, F.X. Wang, S. Yang, F. Zhu, X.D. Zhuang, O.G. Schmidt, X.L. Feng, Adv. Mater. 31, 201806005 (2019). https://doi.org/10.1002/adma.201806005

    Article  CAS  Google Scholar 

  25. H. Wang, M. Wang, Y.B. Tang, Energy Stor. Mater. 13, 1 (2018). https://doi.org/10.1016/j.ensm.2017.12.022

    Article  Google Scholar 

  26. F.X. Wang, X.W. Wu, X.H. Yuan, Z.C. Liu, Y. Zhang, L.J. Fu, Y.S. Zhu, Q.M. Zhou, W. Wu, Huang, Chem. Soc. Rev. 46, 6816 (2017). https://doi.org/10.1039/C7CS00205J

    Article  CAS  Google Scholar 

  27. M.F. Chen, J.Z. Chen, W.J. Zhou, J.L. Xu, C.P. Wong, J. Mater. Chem. A 7, 26524 (2019). https://doi.org/10.1039/C9TA10944G

    Article  CAS  Google Scholar 

  28. W. Deng, Y.J. Sun, X.X. Yao, K. Subramanian, C. Ling, H.B. Wang, S.S. Chopra, B.B. Xu, J.X. Wang, J.F. Chen, D. Wang, H. Amancio, S. Pramana, R.Q. Ye, S. Wang, Adv. Sci. 9, 202102189 (2022). https://doi.org/10.1002/advs.202102189

    Article  CAS  Google Scholar 

  29. R.H. Yu, X. Wen, J. Liu, Y.H. Wang, X.C. Chen, K. Wenelska, E. Mijowska, T. Tang, Appl. Catal. B 298, 120544 (2021). https://doi.org/10.1016/j.apcatb.2021.120544

    Article  CAS  Google Scholar 

  30. J.Y. Nam, T.R. Lee, D. Tokmurzin, S.J. Park, H.W. Ra, S.J. Yoon, T.Y. Man, S.M. Yoon, J.H. Moon, J.G. Lee, D.H. Lee, M.W. Seo, Fuel 331, 125720 (2023). https://doi.org/10.1016/j.fuel.2022.125720

    Article  CAS  Google Scholar 

  31. J.Q. Zhang, X. Wang, Z.Y. Yin, N.Y. Yang, J. Clean. Prod. 331, 129838 (2022). https://doi.org/10.1016/j.jclepro.2021.129838

    Article  CAS  Google Scholar 

  32. M.Y. Lan, Q.F. Liu, C. Yang, J.H. Qiu, L.M. Zang, Energy Technol. 10, 2200939 (2022). https://doi.org/10.1002/ente.202200939

    Article  CAS  Google Scholar 

  33. X.C.A. Chen, X.F. Chen, Q. Liu, Q.C. Zhao, X. Xiong, C.X. Wu, Environ. Pollut. 285, 117485 (2021). https://doi.org/10.1016/j.envpol.2021.117485

    Article  CAS  Google Scholar 

  34. P.X. Li, Y.B. Yang, E.Z. Shi, Q.C. Shen, Y.Y. Shang, S.T. Wu, J.Q. Wei, K.L. Wang, H.W. Zhu, Q. Yuan, A.Y. Cao, D.H. Wu, ACS Appl. Mater. Interfaces 6, 5228 (2014). https://doi.org/10.1016/j.envpol.2021.117485

    Article  CAS  Google Scholar 

  35. J.F. Sun, Y. Huang, C.X. Fu, Z.Y. Wang, Y. Huang, M.S. Zhu, C.Y. Zhi, H. Hu, Nano Energy 27, 230 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008

    Article  CAS  Google Scholar 

  36. X. Liu, L.M. Zang, C.L. Liang, Q.F. Liu, Y. Deng, C. Yang, J.H. Qiu, Synth. Met. 271, 116654 (2021). https://doi.org/10.1016/j.synthmet.2020.116654

    Article  CAS  Google Scholar 

  37. Z.J. Zhao, Q.F. Liu, L.M. Zang, H. You, J. Zhang, X. Wang, C. Yang, J. Alloys Compd. 888, 161646 (2021). https://doi.org/10.1016/j.jallcom.2021.161646

    Article  CAS  Google Scholar 

  38. J.C. Lv, P.W. Zhou, L.P. Zhang, Y. Zhong, X.F. Sui, B.J. Wang, Z.Z. Chen, H. Xu, Z.P. Mao, Chem. Eng. J. 361, 897 (2019). https://doi.org/10.1016/j.cej.2018.12.083

    Article  CAS  Google Scholar 

  39. Z.X. Feng, D. Xu, Z.B. Shao, P. Zhu, J.H. Qiu, L.X. Zhu, Carbohydr. Polym. 296, 119886 (2022). https://doi.org/10.1016/j.carbpol.2022.119886

    Article  CAS  Google Scholar 

  40. Z.X. Pei, L.Y. Ding, C. Wang, Q.Q. Meng, Z.W. Yuan, Z. Zhou, S.L. Zhao, Y. Chen, Angew. Chem. Int. Ed. Engl. 60, 990 (2021). https://doi.org/10.1002/anie.202012030

    Article  CAS  Google Scholar 

  41. C. Wang, X. Zeng, P.J. Cullen, Z.X. Pei, J. Mater. Chem. A 9, 19054 (2021). https://doi.org/10.1039/d1ta02775a

    Article  CAS  Google Scholar 

  42. Z.X. Pei, Z.W. Yuan, C.J. Wang, S.L. Zhao, J.Y. Fei, L. Wei, J.S. Chen, C. Wang, R.J. Qi, Z.W. Liu, Y. Chen, Angew. Chem. Int. Ed. Engl. 59, 4793 (2020). https://doi.org/10.1002/anie.201915836

    Article  CAS  Google Scholar 

  43. Z.X. Pei, L.Y. Ding, C. Wang, Q.Q. Meng, Z.W. Yuan, Z. Zhou, S.L. Zhao, Y. Chen, Energy Environ. Sci. 14, 4926 (2021). https://doi.org/10.1039/d1ee01244d

    Article  CAS  Google Scholar 

  44. S.Q. Zeng, X. Shi, D.Z. Zheng, C.Z. Yao, F.X. Wang, W. Xu, X.H. Lu, Mater. Res. Bull. 135, 111134 (2021). https://doi.org/10.1016/j.materresbull.2020.111134

    Article  CAS  Google Scholar 

  45. X.P. Ma, J.Y. Cheng, L.B. Dong, W.B. Liu, J. Mou, L. Zhao, J.J. Wang, D.Y. Ren, J.L. Wu, C.J. Xu, F.Y. Kang, Energy Stor. Mater. 20, 335 (2019). https://doi.org/10.1016/j.ensm.2018.10.020

    Article  Google Scholar 

  46. J. Eskusson, T. Thomberg, T. Romann, K. Lust, E. Lust, A. Janes, J. Solid State Chem. 25, 2869 (2021). https://doi.org/10.1007/s10008-021-05028-3

    Article  CAS  Google Scholar 

  47. B.D. Boruah, B. Wen, S. Nagane, X. Zhang, S.D. Stranks, A. Boies, M. De Volder, ACS Energy Lett. 5, 3132 (2020). https://doi.org/10.1021/acsenergylett.0c01528

    Article  CAS  Google Scholar 

  48. Q. Wang, S.L. Wang, X.H. Guo, L.M. Ruan, N. Wei, Y. Ma, J.Y. Li, M. Wang, W.Q. Li, W. Zeng, Adv. Electron. Mater. 5, 201900537 (2019). https://doi.org/10.1002/aelm.201900537

    Article  CAS  Google Scholar 

  49. Y. Wang, J. Cao, J.H. Guo, J.L. Zhang, G.S. Liu, D. Wang, W.M. Si, J. Song, X.X. Meng, G.W. Wen, J. Alloys Compd. 915, 165418 (2022). https://doi.org/10.1016/j.jallcom.2022.165418

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 22265007, 52263016); the Natural Science Foundation of Guangxi Province (No. 2022GXNSFAA035597, 2023GXNSFAA026162); the Project of Department of Science and Technology of Guilin (2020010906).

Author information

Authors and Affiliations

Authors

Contributions

ML: Data curation, Investigation, Writing—original draft. ZF: Data curation, Investigation, Writing—original draft. CY: Resources, Investigation, Validation, Writing—review. JQ: Supervision, Validation. LZ: Conceptualization, Supervision, Investigation, Writing-review, Supervision, Methodology.

Corresponding authors

Correspondence to Chao Yang or Limin Zang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5581.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, M., Fan, Z., Yang, C. et al. Robust deposition of conductive polymer on waste textile assisted by vapor polymerization for flexible zinc-ion hybrid capacitor. J Mater Sci: Mater Electron 34, 1502 (2023). https://doi.org/10.1007/s10854-023-10913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10913-w

Navigation