Skip to main content
Log in

Low-temperature and short-time preparation of short rod-like Zn2GeO4:Mn2+ luminescent nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc germanate (Zn2GeO4) is a typical n-type semiconductor with numerous advantages that make it an excellent matrix for luminescent materials. The transition metal manganese (Mn) has multiple oxidation states, which makes it an excellent luminescent ion center. Here we present a facile low-temperature and short-time preparation of Zn2GeO4:Mn2+ (ZGOM) nanoparticles. The method is capable of synthesizing short rod-shaped luminescent nanoparticles with regular shape, uniform size, and ideal luminescence performance within 1 h at a temperature of 220 °C. The phase structure and microstructure of ZGOM were characterized by XRD, XPS, and SEM, and its fourier transform infrared (FT-IR), ultraviolet absorption (UV–vis), and photoluminescence (PL) spectra were collected and analyzed to further characterize the luminescence properties of the products. In addition, the growth mechanism and luminescence mechanism of the ZGOM were discussed in detail, and exploring the application prospects in the latent fingerprint information manifestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. S. Cui, Y. Jiao, J. Liu et al., High-gravity-driven process intensified approach toward Mn2+ doped Zn2GeO4 nanophosphors for deep-ultraviolet detecting. Optik 235, 166644 (2021)

    Article  CAS  Google Scholar 

  2. B.B. Srivastava, S.K. Gupta, Y. Li et al., Bright persistent green emitting water-dispersible Zn2GeO4: Mn nanorods. Dalton Trans. 49(22), 7328–7340 (2020)

    Article  CAS  Google Scholar 

  3. J. Wang, P. Xu, H. Yuan et al., Negative thermal expansion driven by acoustic phonon modes in rhombohedral Zn2GeO4. Results Phys. 19, 103531 (2020)

    Article  Google Scholar 

  4. L. Sun, Y. Qi, C.J. Jia et al., Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale 6(5), 2649–2659 (2014)

    Article  CAS  Google Scholar 

  5. X.L. Mao, D.X. Xu, M.L. Fu et al., Synthesis, characterization, and visible photocatalytic performance of Zn2GeO4 nanobelts modified by CdS quantum dots. Chem Eng J Lausanne 218(1), 73–80 (2013)

    Article  CAS  Google Scholar 

  6. K. Lin, B. Ma, W. Su et al., Improved photocatalytic hydrogen generation on Zn2GeO4 nanorods with high crystallinity. Appl. Surf. Sci. 286, 61–65 (2013)

    Article  CAS  Google Scholar 

  7. L. Hong, Y. Wang, L. Lei et al., Enhanced photocatalytic activity and persistent luminescence in Zn2GeO4:Mn2+ by Eu3+ doping. Mod. Phys. Lett. B 30(27), 1650305 (2016)

    Article  Google Scholar 

  8. L. Qi et al., High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc. 32(41), 14385–14387 (2010)

    Google Scholar 

  9. W. Rui, S. Wu, Y. Lv et al., Partially crystalline Zn2GeO4 nanorod/graphene composites as anode materials for high performance lithium ion batteries. Langmuir 30(27), 8215–8220 (2014)

    Article  Google Scholar 

  10. J. Lu, D. Li, L. Li et al., Cobalt-doped Zn2GeO4 nanorods assembled into hollow spheres as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 6(14), 5926–5934 (2018)

    Article  CAS  Google Scholar 

  11. M. Li, Z. Zhang, X. Ge et al., Enhanced electrochemical properties of carbon coated Zn2GeO4 micron-rods as anode materials for sodium-ion batteries. Chem. Eng. J. 331, 203–210 (2018)

    Article  CAS  Google Scholar 

  12. H.H. Li, L.L. Zhang, C.Y. Fan et al., Flexible paper electrodes constructed from Zn2GeO4 nanofibers anchored with amorphous carbon for advanced lithium ion batteries. J. Mater. Chem. A 4(6), 2055–2059 (2016)

    Article  CAS  Google Scholar 

  13. Y. Chen, Y. Lin, N. Du et al., Zn2GeO4@C core-shell nanorods as highly reversible anode materials for lithium-ion batteries. Energy Technol. 5(9), 1656–1662 (2017)

    Article  CAS  Google Scholar 

  14. Y. Xu, S. Wu, X. Li et al., Preparation and dual sensing property of Zn2GeO4:Mn2+@ZIF-8 heterostructure chemosensor. Mater. Lett. 210, 235–258 (2018)

    Article  CAS  Google Scholar 

  15. R. Li, R. Zhang, Z. Lou et al., Electrospraying preparation of metal germanate nanospheres for high-performance lithium-ion batteries and room-temperature gas sensors. Nanoscale 11(25), 12116–12123 (2019)

    Article  CAS  Google Scholar 

  16. V.Y. Suzuki, L.H.C. Amorin, N.M. Lima et al., Characterization of the structural, optical, photocatalytic and in vitro and in vivo anti-inflammatory properties of Mn2+ doped Zn2GeO4 nanorods. J. Mater. Chem. C 7(27), 8216–8225 (2019)

    Article  CAS  Google Scholar 

  17. M. Shang, G. Li, D. Yang et al., (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Trans 40(37), 9379–9387 (2011)

    Article  CAS  Google Scholar 

  18. S. Ma, Z. Peng, A.H. Kitai, A CuO nanowire-based alternating current oxide powder electroluminescent device with high stability. Angew. Chem. Int. Ed. 57(35), 11267–11272 (2018)

    Article  CAS  Google Scholar 

  19. J. Li, X. Huag, X. Zhao et al., pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-Free biosensing and high-level information encryption. Angew. Chem. Int. Ed. 133(5), 2328–2435 (2021)

    Article  Google Scholar 

  20. M.Y. Tsai, C.Y. Yu, C.C. Wang et al., Water-driven formation of luminescent Zn2GeO4 nanorods from Zn-containing Ge nanoparticles. Cryst. Growth Des. 8(7), 2264–2269 (2008)

    Article  CAS  Google Scholar 

  21. R. Suzuki, J. Kunitomo, Y. Takahashi et al., Mn-doped LiNaGe4O9 as a rare-earth free phosphor: impact of Na-substitution on emission in tetragermanate phase. J. Ceram. Soc. Jpn. 123(1441), 888–891 (2015)

    Article  CAS  Google Scholar 

  22. R. Cao, W. Luo, Q. Xiong et al., Synthesis and photoluminescence properties of Ba2GeO4:Mn4+ novel deep red-emitting phosphor. Chem. Lett. 44(10), 1422–1424 (2015)

    Article  CAS  Google Scholar 

  23. L. Lin, Y. Min, C. Shi et al., Synthesis and luminescence properties of red phosphors: Mn2+ doped MgSiO3 and Mg2SiO4 prepared by sol-gel method. J. Rare Earths 24(1), 104–107 (2006)

    Article  Google Scholar 

  24. Y. Jin, Y. Hu, Y. Fu et al., Preparation, design, and characterization of the novel long persistent phosphors: Na2ZnGeO4 and Na2ZnGeO4:Mn2+. J. Am. Ceram. Soc. 98(5), 1555–1561 (2015)

    Article  CAS  Google Scholar 

  25. Y. Zhang, H. Yao, Y. Xu et al., Synergistic weak/strong coupling luminescence in Eu-metal-organic framework/Zn2GeO4:Mn2+ nanocomposites for ratiometric luminescence thermometer. Dyes Pigm. 157, 321–327 (2018)

    Article  CAS  Google Scholar 

  26. F. Yang, T. Wang, S. Wang et al., Zn2GeO4:Mn2+, Yb3+ based near-infrared down-conversion nanophosphors: size-tunable synthesis and fabrication of flexible, transparent and luminescent thin film. Eur. J. Inorg. Chem. 2017(40), 4744–4749 (2017)

    Article  CAS  Google Scholar 

  27. M. Wan, Y. Wang, X. Wang et al., The properties of a novel green long afterglow phosphor Zn2GeO4:Mn2+, Pr3+. Opt. Mater. 36(3), 650–654 (2014)

    Article  CAS  Google Scholar 

  28. S. Zhang, Y. Hu, R. Chen et al., Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors. Opt. Mater. 36(11), 1830–1835 (2014)

    Article  CAS  Google Scholar 

  29. H. He, Y. Zhang, Q. Pan et al., Controllable synthesis of Zn2GeO4: Eu nanocrystals with multi-color emission for white light-emitting diodes. J. Mater. Chem. C 3(21), 5419–5429 (2015)

    Article  CAS  Google Scholar 

  30. G. Gao, M. Peng, L. Wondraczek, Spectral shifting and NIR down-conversion in Bi3+/Yb3+ co-doped Zn2GeO4. J. Mater. Chem. C 2(38), 8083–8088 (2014)

    Article  CAS  Google Scholar 

  31. H.D. Nguyen, C. Lin, M.H. Fang et al., Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation. J. Mater. Chem. C 2(48), 10268–10272 (2014)

    Article  CAS  Google Scholar 

  32. L.L. Wei, C.C. Lin, Y.Y. Wang et al., Photoluminescent evolution induced by structural transformation through thermal treating in the red narrow-band phosphor K2GeF6:Mn4+. ACS Appl. Mater. Interfaces. 7(20), 10656–10659 (2015)

    Article  CAS  Google Scholar 

  33. K.H. Hsu, K.S. Chen, Photoluminescence of ZnGa2O4: Mn phosphor fired at vacuum atmosphere. Ceram. Int. 25(4), 339–344 (1999)

    Article  CAS  Google Scholar 

  34. T. Si, Q. Zhu, J. Xiahou et al., Regulating Mn2+/Mn4+ activators in ZnGa2O4 via Mg2+/Ge4+ doping to generate multimode luminescence for advanced anti-counterfeiting. ACS Appl. Electron. Mater. 3(5), 2005–2016 (2021)

    Article  CAS  Google Scholar 

  35. L. Dong, L. Zhang, Y. Jia et al., ZnGa2-yAlyO4:Mn2+, Mn4+ thermochromic phosphors: valence state control and optical temperature sensing. Inorg. Chem. 59(21), 15969–15976 (2020)

    Article  CAS  Google Scholar 

  36. Y. Li, A. Zhao, C. Chen et al., Controllable synthesis and morphology-dependent photoluminescence properties of well-defined one-dimensional Zn2GeO4:Mn2+nanostructures. Dyes Pigm. 150, 267–274 (2017)

    Article  Google Scholar 

  37. A. Abdukayum, J.T. Chen, Q. Zhao et al., Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135(38), 14125–14133 (2013)

    Article  CAS  Google Scholar 

  38. T. Aitasalo, P. Dereń, J. Hls et al., Persistent luminescence phenomena in materials doped with rare earth ions. J. Solid State Chem. 171(1–2), 114–122 (2003)

    Article  CAS  Google Scholar 

  39. J. Wang, Q. Ma, W. Zheng et al., One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 11(8), 8185–8191 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant 2018YFE0206900 and Hubei Key Laboratory of Forensic Science (Hubei University of Police) (2018KFKT05).

Funding

Funding was provided by the National Key Research and Development Program of China under Grant (Grant Number 2018YFE0206900), Hubei Key Laboratory of Forensic Science (Hubei University of Police) (Grant Number 2018KFKT05).

Author information

Authors and Affiliations

Authors

Contributions

QZ: Conceptualization, methodology, software, investigation, validation, formal analysis, writing-original draft, project administration. XW: validation, data curation, visualization, software, resources, writing-review and editing, data curation. CW: Validation, formal analysis, visualization, supervision, data curation. XX: Writing-review and editing, funding acquisition. YW: Writing-review and editing, funding acquisition.

Corresponding author

Correspondence to Yongqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We are submitting our manuscript entitled “Low-temperature and short-time preparation of short rod-like Zn2GeO4:Mn2+ luminescent nanoparticles”, for your kind consideration of its suitability for publication in your journal. The work described has not been published before. We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3257 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, X., Wang, C. et al. Low-temperature and short-time preparation of short rod-like Zn2GeO4:Mn2+ luminescent nanoparticles. J Mater Sci: Mater Electron 34, 1477 (2023). https://doi.org/10.1007/s10854-023-10908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10908-7

Navigation