Skip to main content
Log in

Ni doping effect on the temperature-dependent dielectric properties and ac conductivity of polycrystalline GdMn1−XNiXO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study analyzes the impact of nickel doping on the structural, microstructural, and dielectric properties of GdMn1−XNiXO3 (GNO) with X = 0.0, 0.05, and 0.10. The samples were produced using a ceramic synthesis technique, and they were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and dielectric measurements at various frequencies and temperatures. The Uniform Deformation Model (UDM), Uniform Deformation Stress Model (UDSM), Uniform Deformation Energy Density Model (UDEDM), Arrhenius law, Curie–Von Schweidler (CS) function, and Jonscher’s power law were used to understand the effects of nickel doping on the physical properties of GNO. Grain size variation influences the dielectric behavior of the materials studied. This study’s findings contribute to a better understanding of the relationship between the composition and properties of GNO materials with potential applications in the field of magnetoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available from the corresponding author on reasonable request.

References

  1. P. Solanki, M. Vala, P. Siddhapura, S.V. Bhatt, M. Ranjan, B. Kataria, J. Magn. Magn. Mater. 546, 170102 (2022)

    Google Scholar 

  2. T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, Y. Tokura, Phys. Rev. B 72, 100102 (2005)

    Google Scholar 

  3. A.M. Kadomtseva, Y.F. Popov, G.P. Vorob’ev, K. Kamilov, A.P. Pyatakov, V.Y. Ivanov, A.A. Mukhin, A. Balbashov, J. Exp. Theor. Phys. Lett. 81, 19 (2005)

    CAS  Google Scholar 

  4. J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V.Y. Ivanov, A. Mukhin, A. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007)

    Google Scholar 

  5. Y. Yamasaki, S. Miyasaka, T. Goto, H. Sagayama, T. Arima, Y. Tokura, Phys. Rev. B 76, 184418 (2007)

    Google Scholar 

  6. W. Ferreira, J.A. Moreira, A. Almeida, M. Chaves, J. Araújo, J. Oliveira, J.M. Da Silva, M. Sá, T. Mendonça, P.S. Carvalho, Phys. Rev. B 79, 054303 (2009)

    Google Scholar 

  7. J.A. Moreira, A. Almeida, W. Ferreira, M. Chaves, J. Oliveira, J.M. da Silva, M. Sá, S. Vilela, P. Tavares, Solid State Commun. 151, 368 (2011)

    Google Scholar 

  8. J. Oliveira, J.A. Moreira, A. Almeida, M.R. Chaves, J.M. da Silva, J.B. Oliveira, M.A. Sá, P.B. Tavares, R. Ranjith, W. Prellier, Phys. Rev. B 84, 094414 (2011)

    Google Scholar 

  9. P. Solanki, M. Vala, D. Dhruv, S.V. Bhatt, B. Kataria, Surf. Interfaces 35, 102474 (2022)

    CAS  Google Scholar 

  10. P. Solanki, S.V. Bhatt, B. Kataria, Mater. Today Proc. 76, 573 (2023)

    CAS  Google Scholar 

  11. A. Nandy, A. Roychowdhury, T. Kar, D. Das, S.K. Pradhan, RSC Adv. 6, 20609 (2016)

    CAS  Google Scholar 

  12. S. Samantaray, D. Mishra, S. Pradhan, P. Mishra, B. Sekhar, D. Behera, P. Rout, S. Das, D. Sahu, B. Roul, J. Magn. Magn. Mater. 339, 168 (2013)

    CAS  Google Scholar 

  13. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature. 426, 55 (2003)

    CAS  Google Scholar 

  14. N. Qu, Z. Li, J. Supercond. Nov. Magn. 31, 2869 (2018)

    CAS  Google Scholar 

  15. A. Pal, P. Murugavel, J. Appl. Phys. 123, 234102 (2018)

    Google Scholar 

  16. J.A. Moreira, A. Almeida, M. Chaves, J. Kreisel, J. Oliveira, F. Carpinteiro, P. Tavares, J. Phys. Condens. Matter. 24, 436002 (2012)

    Google Scholar 

  17. D. Keeble, S. Singh, R. Mackie, M. Morozov, S. McGuire, D. Damjanovic, Phys. Rev. B 76, 144109 (2007)

    Google Scholar 

  18. J.-S. An, H.-S. Lee, P. Byeon, D. Kim, H.B. Bae, S.-Y. Choi, J. Ryu, S.-Y. Chung, Energy Environ. Sci. 16, 1992 (2023)

    CAS  Google Scholar 

  19. M.A. Bhat, P. Rana, F.A. Mir, D. Pathak, J. Mater. Sci. Mater. Electron. 34, 269 (2023)

    CAS  Google Scholar 

  20. S. Sharma, N. Ahmad, S. Khan, J. Mater. Sci. Mater. Electron. 34, 476 (2023)

    CAS  Google Scholar 

  21. P. Kaur, K.K. Sharma, R. Kumar, R. Pandit, Int. J. Mod. Phys.: Conf. 22, 179–183, (2013). https://doi.org/10.1142/s201019451301009x

    Article  CAS  Google Scholar 

  22. A. Basu, P. Kour, S. Parmar, R. Naphade, S. Ogale, J. Phys. Chem. C 122(9), 4802–4808, (2018). https://doi.org/10.1021/acs.jpcc.8b00192

    Article  CAS  Google Scholar 

  23. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. (2014). https://doi.org/10.4236/wjnse.2014.41004

    Article  Google Scholar 

  24. C. Suryanarayana, M.G. Norton, in X-Ray Diffraction (Springer, Boston, 1998). https://doi.org/10.1007/978-1-4899-0148-4_1

  25. J.-M. Zhang, Y. Zhang, K.-W. Xu, V. Ji, Solid State Commun. 139, 87 (2006)

    CAS  Google Scholar 

  26. C. Chen, L. Liu, Y. Wen, Y. Jiang, L. Chen, Crystals. 9, 497 (2019)

    Google Scholar 

  27. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    CAS  Google Scholar 

  28. N. Miao, N.C. Bristowe, B. Xu, M.J. Verstraete, P. Ghosez, J. Phys. Condens. Matter. 26, 035401 (2013)

    Google Scholar 

  29. R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Google Scholar 

  30. R. Choithrani, M.N. Rao, S. Chaplot, N. Gaur, R. Singh, New. J. Phys. 11, 073041 (2009)

    Google Scholar 

  31. H. Dai, H. Liu, K. Peng, F. Ye, T. Li, J. Chen, Z. Chen, J. Mater. Sci. Mater. Electron. 30, 2523 (2019)

    CAS  Google Scholar 

  32. A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkany, M. Abou-Salama, RSC Adv. 10, 28007 (2020)

    CAS  Google Scholar 

  33. M. Pollak, B. Shklovskii, Hopping Transport in Solids, 1st edn. (Elsevier, 1991).

  34. M. Ahmed, S. Mansour, M. Afifi, J. Magn. Magn. Mater. 324, 4 (2012)

    CAS  Google Scholar 

  35. C. Kittel, Kittel’s Introduction to Solid State Physics (Wiley, 2019).

  36. J. Zhang, Q. Yan, F. Wang, P. Yuan, P. Zhang, J. Phys. Condens. Matter. 12, 1981 (2000)

    CAS  Google Scholar 

  37. P. Vanitha, R. Singh, S. Natarajan, C. Rao, J. Solid State Chem. 137, 365 (1998)

    CAS  Google Scholar 

  38. A. Maignan, C. Martin, F. Damay, M. Hervieu, B. Raveau, J. Magn. Magn. Mater. 188, 185 (1998)

    CAS  Google Scholar 

  39. C. Wang, Y. Cui, L. Zhang, Appl. Phys. Lett. 90, 012904 (2007)

    Google Scholar 

  40. R. Sarkar, B. Sarkar, S. Pal, Appl. Phys. A 127, 177 (2021)

    CAS  Google Scholar 

  41. S. Parmar, A. Biswas, B. Ray, S. Gosavi, S. Datar, S. Ogale, J. Phys. Chem. C 125(20), 11216–11224, (2021). https://doi.org/10.1021/acs.jpcc.1c02303

  42. F. Ye, H. Dai, M. Wang, J. Chen, T. Li, Z. Chen, J. Mater. Sci. Mater. Electron. 31, 3590 (2020)

    CAS  Google Scholar 

  43. F. Grant, J. Appl. Phys. 29, 76 (1958)

    Google Scholar 

  44. B. Lee, T. Moon, T.-G. Kim, D.-K. Choi, B. Park, Appl. Phys. Lett. 87, 012901 (2005)

    Google Scholar 

  45. N. Shukla, V. Kumar, D. Dwivedi, J. Non-Oxide Glas. 8, 47 (2016)

    Google Scholar 

  46. A.K. Jonscher, J. Phys. Appl. Phys. 32, R57 (1999)

    CAS  Google Scholar 

  47. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    CAS  Google Scholar 

  48. K. Funke, Solid State Ion. 18, 183 (1986)

    Google Scholar 

  49. J. Izquierdo, G. Bolanos, V. Zapata, O. Moran, Curr. Appl. Phys. 14, 1492 (2014)

    Google Scholar 

  50. S. Sahoo, U. Dash, S. Parashar, S. Ali, J. Adv. Ceram. 2, 291 (2013)

    CAS  Google Scholar 

  51. D. Singh, R. Gupta, K. Bamzai, J. Mater. Sci. Mater. Electron. 28, 5295 (2017)

    CAS  Google Scholar 

Download references

Funding

The authors are gratefully acknowledging Dr. Devendra Mohan, Department of Physics, Guru Jambheshwar University of Science and Technology, Hissar for providing temperature-dependent dielectric measurement facilities and fruitful discussions. PPS and BRK are thankful to DST-SERB, New Delhi for providing partial financial support (File No. EEQ/2019/000297) for this work.

Author information

Authors and Affiliations

Authors

Contributions

PS contributed to conceptualization, methodology, writing of the original draft, and resources. MV contributed to investigation and software. DD contributed to investigation and software. CRS contributed to investigation and software. JHM contributed to investigation and editing of the manuscript. BK contributed to supervision, reviewing & editing of the manuscript, and project administration.

Corresponding author

Correspondence to Bharat Kataria.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solanki, P., Vala, M., Dhruv, D. et al. Ni doping effect on the temperature-dependent dielectric properties and ac conductivity of polycrystalline GdMn1−XNiXO3 ceramics. J Mater Sci: Mater Electron 34, 1501 (2023). https://doi.org/10.1007/s10854-023-10903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10903-y

Navigation