Skip to main content
Log in

Effects of Te-doping on the thermoelectric properties of InGaSb crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoelectric materials with optimum carrier concentration of the order of 1019–1020/cm3 are required to obtain a high figure of merit (ZT) value. As undoped In0.8Ga0.2Sb has a lower carrier concentration (~1016/cm3), Te impurity was doped between low (1 × 1018/cm3) and high level (1 x 1021/cm3) to understand the effects of doping on its thermoelectric properties. The undoped and Te-doped In0.8Ga0.2Sb crystals retained cubic zinc blende crystal structure irrespective of heavy doping of Te element. In addition to the optical phonon vibrational modes, acoustic phonon modes were also present when the doping concentration exceeded 1 × 1018/cm3. The carrier concentration in Te-doped In0.8Ga0.2Sb crystals were varied in the range 1018–1020/cm3. Te-doped In0.8Ga0.2Sb with concentration 1 × 1018/cm3 was recorded a higher power factor because of its lower resistivity and higher mobility than other crystals. The ZT of Te-doped In0.8Ga0.2Sb (1 × 1018/cm3) was higher than other samples at 300–450 K. This study revealed that the optimum Te dopant concentration to enhance the ZT value of InxGa1−xSb is 1 x 1018/cm3 for optimizing its properties toward mid-temperature thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the corresponding author.

References

  1. P.F. Yanez, V. Romero, O. Armas, Gerretti, mac, thermal management of thermoelectric generators for waste energy recovery. Appl. Therm. Eng. 196, 117291–117291 (2021)

    Article  Google Scholar 

  2. S. Leblanc, Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 1–2, 26–35 (2014)

    Google Scholar 

  3. S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: materials, applications, modelling and performance improvement. Renew. Sust. Energy Rev. 65, 698–726 (2016)

    Article  CAS  Google Scholar 

  4. M.A. Zouli, S. Bentouba, J.G. Stocholm, M. Bourouis, A review on thermoelectric generators: progress and applications. Energies 13, 3606–3601 (2020)

    Article  Google Scholar 

  5. W. Liu, Q. Jie, H.S. Kim, Z. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015)

    Article  CAS  Google Scholar 

  6. M. Shtern, M. Rogachev, Y. Shtern, A. Kozlov, A. Sherchenkov, E. Korchagin, Contact systems for thermoelements with operating temperatures up to 1200 K. International Seminar on Electron Devices Design and production (SED), Prague, Czech Republic 1–6 (2021)

  7. X.L. Shi, J. Zou, Z.G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020)

    Article  CAS  Google Scholar 

  8. G. Schierning, R. Chavez, R. Schmechel, B. Balke, G. Rogl, P. Rogl, Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design. Transl Mater. Res. 2, 025001 (2015)

    Article  Google Scholar 

  9. Z. Han, J.W. Li, F. Jiang, J. Xia, B.P. Zhang, J.F. Li, W. Liu, Room-temperature thermoelectric materials: challenges and a new paradigm. J. Materiomics 8, 427–436 (2022)

    Article  Google Scholar 

  10. B. Cai, H. Hu, H.L. Zhuang, J.F. Li, Promising materials for thermoelectric applications. J. Alloys Compd. 806, 471–486 (2019)

    Article  CAS  Google Scholar 

  11. K. Huang, Y. Yan, B. Li, Y. Li, K. Li, J. Li, A novel design of thermoelectric generator for automotive waste heat recovery. Automot. Innov. 1, 54–61 (2018)

    Article  Google Scholar 

  12. E. Wooly, Y. Luo, A. Simeone, Industrial waste heat recovery: a systematic approach. Sustain. Energy Technol. Assess. 29, 50–59 (2018)

    Google Scholar 

  13. Y. Li, J. Han, Q. Xiang, C. Zhang, J. Li, Enhancing thermoelectric properties of p–type SiGe by SiMo addition. J. Mater. Sci.: Mater. Electron. 30, 9163–9170 (2019)

    CAS  Google Scholar 

  14. X. Zhang, L.D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics 1, 92–105 (2015)

    Article  Google Scholar 

  15. M. Mukherjee, A. Srivastava, A.K. Singh, Recent advances in designing thermoelectric materials. J. Mater. Chem. C 10, 12524–12555 (2022)

    Article  CAS  Google Scholar 

  16. J.R. Gomez, A. Suwardi, I. Nandhakumar, A. Abhtaha, K. Hippalgaonkar, Toward accelerated thermoelectric materials and process discovery. ACS Appl. Energy Mater. 3, 2240–2257 (2020)

    Article  Google Scholar 

  17. G.S. Hegde, A.N. Prabhu, A. Rao, K. Gurukrishna, U.D. Shanubhogue, Investigation of near-room and high-temperature thermoelectric properties of (Bi0.98In0.02)2Se2.7Te0.3/Bi2Te3 composite system. J. Mater. Sci.: Mater. Electron. 33, 25163–25173 (2022)

    CAS  Google Scholar 

  18. S. Yamaguchi, Y. nagawa, N. Kaiwa, A. Yamamoto, Thermoelectric properties of InSb and Ga0.03In0.97Sb thin films grown by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 86(1–3), 153504 (2005)

    Article  Google Scholar 

  19. M. Jin, Z. Tang, R. Zhang, L. Zhou, Y. Chen, S. Zhao, Y. Chen, X. Wang, R. Li, Growth of GaSb crystal and evaluation of its thermoelectric properties along (111) plane. Cryst. Res. Technol. 55, 1900156–1900151 (2020)

    Article  CAS  Google Scholar 

  20. X. Zhu, Y. Zhang, C. Hang, K. Du, Q. Wan, M. Zhou, G. Qin, Z. Xiong, Unexpected enhanced thermal conductivity of GaxIn1−xSb ternary alloys. J. Phys. Chem. C 127, 3246–3255 (2023)

    Article  CAS  Google Scholar 

  21. Z. Du, M. yan, J. Zhu, Thermoelectric performance of In0.8+yGa0.2Sb (0 ≤ y ≤ 0.06) ternary solid solutions with in excess. Mater. Res. Express 5, 106301–106301 (2018)

    Article  Google Scholar 

  22. Q. Fu, Z. Wu, J. Li, Enhanced thermoelectric properties of Zn-doped GaSb nanocomposites. RSC Adv. 10, 28415–28421 (2020)

    Article  CAS  Google Scholar 

  23. Y. Inatomi, K. Sakata, M. Arivanandhan, G. Rajesh, V. Nirmal Kumar, T. Koyama, Y. Momose, T. Ozawa, Y. Okano, Y. Hayakawa, Growth of InxGa1-xSb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments. npj Microgravity 1, 15011–15011 (2015)

    Article  CAS  Google Scholar 

  24. J. Yu, Y. Inatomi, V. Nirmal Kumar, Y. Hayakawa, Y. Okano, M. Arivanandhan, Y. Momose, X. Pan, Y. Liu, X. Zhang, X. Luo, Homogeneous InGaSb crystal grown under microgravity using chinese recovery satellite SJ-10. npj Microgravity 5, 8–1 (2019)

    Article  Google Scholar 

  25. V. Nirmal Kumar, Y. Hayakawa, H. Udono, Y. Inatomi, An approach to optimize the thermoelectric properties of III–V ternary InGaSb crystals by defect engineering via point defects and microscale compositional segregations. Inorg. Chem. 58, 11579–11588 (2019)

    Article  Google Scholar 

  26. V. Nirmal Kumar, M. Arivanandan, T. Koyoma, H. Udono, Y. Inatomi, Y. Hayakawa, Effects of varying indium composition on the thermoelectric properties of InxGa1-xSb ternary alloys. Appl. Phys. A 122, 885–881 (2016)

    Article  Google Scholar 

  27. V. Nirmal Kumar, Y. Hayakawa, H. Udono, Y. Inatomi, Enhanced thermoelectric properties of InSb: studies on In/Ga doped GaSb/InSb crystals. Intermetallics 105, 21–28 (2019)

    Article  CAS  Google Scholar 

  28. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

  29. K. Aoki, E. Anastassakis, M. Cardona, Dependence of Raman frequencies and scattering intensities on pressure in Gasb, InAs, and Insb semiconductors. Phy Rev. B 30, 681–687 (1984)

    Article  CAS  Google Scholar 

  30. X. Wang, K. Kunc, I. Loa, U. Schwarz, K. Syassen, Effect of pressure on the Raman modes of antimony. Phys. Rev. B 74, 134305–134301 (2006)

    Article  Google Scholar 

  31. W. Richter, H. Kohler, R. Becker, A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1 – xSex)3 (0 < x < 1), (Bi1 – ySby)2Te3 (0 < y < 1). Phys. Status Solidi B 84, 619–628 (1977)

    Article  CAS  Google Scholar 

  32. A. Slaout, P. Siffert, Determination of the electron effective mass and relaxation time in heavily doped silicon. Phys. Status Solidi B 89, 617–622 (1985)

    Article  Google Scholar 

  33. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, Effects of doping on the transport properties of CoSb3. J. Appl. Phys. 86, 3780–3786 (1999)

    Article  CAS  Google Scholar 

  34. J.S. Jin, J.S. Lee, O. Kwon, Electron effective mean free path and thermal conductivity predictions of metallic thin films. Appl. Phys. Lett. 92, 171910–171911 (2008)

    Article  Google Scholar 

  35. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506–041501 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shizuoka University, Ibaraki University, and Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Japan for the support in material preparation and analyses. We also thank for the financial support by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant no: JP19H02491) and CSIR-Institute of Minerals and Materials Technology, India (project grant OLP-114).

Author information

Authors and Affiliations

Authors

Contributions

The conception was done by NKV. The experiment, design and measurements were carried out by NKV, YH, HU and YI. The results were analyzed and manuscript draft was prepared by NKV. YH, HU, and YI validated and suggested corrections in the manuscript.

Corresponding author

Correspondence to Nirmal Kumar Velu.

Ethics declarations

Conflict of interest

The authors declare no competing financial or personal interests.

Ethical approval

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, N.K., Hayakawa, Y., Udono, H. et al. Effects of Te-doping on the thermoelectric properties of InGaSb crystals. J Mater Sci: Mater Electron 34, 1480 (2023). https://doi.org/10.1007/s10854-023-10900-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10900-1

Navigation